
Class Search in NIO ∗†

(searching the web directory)
Documentation

Sebastian Bitzer
(sebastian.bitzer@uni-osnabrueck.de)

April 1, 2003

Introduction

Although the web directory in NIO provides an intuitive access to often used
links a function to search not so frequently visited websites becomes with
an growing web directory more and more important. Especially with an
increasing number of groups within the web directory it is very difficult to
keep track of them.

The class which is presented here (search.class.php) tries to satisfy
this need for a search function which is structuring query results, too, and
therefore provides a connection to the structure of the web directory.

This documentation will explain the way from the query to the struc-
tured output of the search results. This includes all subtasks such as finding
keywords according to a query, valuating keywords by a distance measure,
valuating links by values of related keywords and also evaluation of groups.

∗this search originates in the seminar ”Modelling user interests II” by Helmar Gust
who also was deeply involved in designing this program

†NIO can be accessed via http://fuchur.informatik.uni-osnabrueck.de/nio

1

Contents

1 From query to valued keywords 3
1.1 Stemming . 3
1.2 Generalisation . 4
1.3 Evaluation of keywords by distance measure 5
1.4 Putting all together . 6

2 From valued keywords to a sorted link list 6
2.1 Principle mechanism . 7
2.2 Mechanism in detail . 7
2.3 Alternative scheme . 8

3 Structuring by including groups in search 9
3.1 Evaluating groups . 9
3.2 Allocation of links to groups 10

4 Performance matters 10

5 Conclusion 11

A Source code 13
A.1 parse-query . 13
A.2 stem . 13
A.3 distance . 15
A.4 get-key-value . 15
A.5 search-groups-int . 16
A.6 search-groups . 18
A.7 set-vars . 20
A.8 search-all . 24

B Graphical overview 26

2

1 From query to valued keywords

In the web directory every web link and every group is connected to key-
words which should describe the content of the link or group to some extent.
Our search uses these keywords to find links and groups according to a query
given from the user. In this section we describe how we get from a query to
matching keywords.

The first step is to normalise the query, which is often done in informa-
tion retrieval systems, so that also different word forms (e.g. verb and noun)
and different writings of words (think of different writings for German um-
lauts) can be found. This is realised by a stemming. We also used to name
this method ’lemmatisation’, but if one looks at the definition of lemmatisa-
tion in more detail one will find that the method used here is more likely a
stemming. The main difference between stemming and lemmatisation is that
the result of stemming does not have to be a common word (but precisely
a stem) whereas lemmatisation should result in a lemma corresponding to
the input. Stemming therefore is easier to implement and more technical,
because one just can cut common suffixes or affixes.

In addition a generalisation is needed to include, for example, combined
words into search for keywords.

This generalisation in turn makes it necessary to evaluate each found
keyword in comparison to the original search string.

1.1 Stemming

There are a number of sophisticated stemmers freely available in the internet
1, but it is very difficult to find one that will do exactly what you want it to do.
It is an additional problem that within the web directory we have to handle
German and English words at the same time. Thus we have temporarily
implemented an own simple stemmer which works in the following way:

• handle German umlauts:
substitute every occurrence of
’ü’, ’ö’, ’ä’, ’ß’, ’ü’, ’ö’ ,’ä’ ,’ß’ (and capital
letters) by

1e.g. the Porter stemmer which is available in several programming languages except
for PHP from http://www.tartarus.org/∼martin/PorterStemmer/

3

’ue’, ’oe’, ’ae’ or ’ss’
this is necessary because the web directory stores umlauts at present
in html-form (e.g. ’ä’) but users will type in words with normal
umlauts (’ä’)

• minimal word length:
to prevent words from being cut to meaningless short sequences of
characters (e.g. ’singen’ to ’s’) we introduced a minimal word length,
i.e. every word has to keep a length of at least four characters after
cutting of suffixes

• cutting suffixes:
cut suffixes in exactly this order of appearance:
’en’, ’es’, ’er’, ’ung’, ’s’, ’ing’, ’ly’, ’n’, ’e’
’en’, ’es’, ’er’ and ’ung’ are common German suffixes, shorter ones are
before longer ones so that word constructions like ’Umgebungen’ can
be reduced appropriately
’s’, ’ing’, ’ly’, ’n’ and ’e’ are mainly English suffixes

For the future one can think about a combination of existing stemmers for
German and English or a real lemmatisation at least for English. Till then
every query will be normalised by the above given algorithm which also dy-
namically writes a normalised version of each keyword into the database, if
not already present there.

→ method stem source code in A.2

1.2 Generalisation

With a number of approximately 2000 web links the web directory is not too
big. Therefore a further generalisation is needed in order to get an accept-
ably sized search result.

We decided to use a generalisation which reduces a word to its phonetic
form. In particular this is soundex for which there exists an implementation
in PHP.

Soundex produces a four-character string which codes the first letter of
the word as the first character of the result. The other three characters build
an integer corresponding to the phonetics of the input word (e.g. science

4

will become ’S520’). Details are described by Donald Knuth in [1]. That
means that soundex reduces every possible word to one of 26000 such codings
whereby, for example, words starting with ’x’ are quite rare.

This results in a strong robustness against spelling mistakes, but seman-
tically completely unrelated words like ’Maus’ and ’Mausoleum’ will never-
theless not be matched, because they get different phonetic codings. On the
other hand combined words like ’cognitive’ and ’cognitive architecture’ will
be matched with this method. For an explanation why this is sometimes
necessary see 1.4 .

→ method parse query source code in A.1

1.3 Evaluation of keywords by distance measure

A request to the database with a stemmed and ’soundexed’ query will yield
a lot of keywords that do not correspond to the spelling of the original query.
The question then is, of course, how good these keywords match to the query.

We introduced a distance measure between words to handle this problem.
The core of this distance measure is the Levenshtein distance between two
strings. It calculates the minimum number of characters you have to delete,
insert or substitute to transform string1 into string2. The Levenshtein dis-
tance was first published by Vladimir Levenshtein [2]. We used the recent
PHP implementation of this distance measure with equal costs for deletion,
insertion and substitution. In addition we normalised the measure to val-
ues between 0 and 1 where 1 means that the two strings match completely
2. This is done by subtracting the division of the result of the Levenshtein
distance by the length of the longest string 3 from 1:

distance(string1, string2) = 1− levenshtein(string1, string2)

max(length(string1), length(string2))

We just compare stems with the Levenshtein distance, but before we do so
we check, if the found keyword is a substring of the original query and if it is,
it gets the highest value 1 4. If the stem of the keyword matches to the stem

2in view of an evaluation with better values = higher values
3which is equal to the supremum of this Levenshtein distance
4again the values are normalised to be between 0 and 1

5

of a queried word, it gets the value 0.9, else the Levenshtein distance between
the stems of keyword and queried word is calculated and gets a value of at
most 0.8. This is easily calculated by:

value(keyword) = 0.8 · distance(stem(keyword), stem(queried word)).

→ method get key value source code in A.4

1.4 Putting all together

So what happens exactly, when a query is passed to the system?

At first the query is parsed into single words and is standardised to lower
letters. Then every such word is stemmed and soundex-codes for these stems
are calculated. Every keyword whose soundex-code matches one of the codes
of the query is fetched from the database. In the web directory a keyword
can also be a group of words, but the query is always parsed into single
words. Therefore it is useful to have a generalisation, like soundex, on hand
that also allows to find a group of words containing a queried word (see 1.2).
Each keyword is then evaluated in comparison to each queried word as ex-
plained above. The maximum of these comparisons is taken as the value of
the keyword.

Figure 2 gives a graphical overview over the algorithm stated so far on
the basis of the sample query ’Cognitive Science’.

→ method set vars source code in A.7 on page 21/top of 22

2 From valued keywords to a sorted link list

With keywords as the semantical description of a link it is possible to ac-
cess web links that should have a relation to the query. Again it has to be
evaluated how strong this relation is. In this section we describe by which
mechanism this is done.

The starting point for this is that we already have valued keywords and
have used them to get all links that are associated with them.

6

2.1 Principle mechanism

The main principle behind the mechanism we utilise here is the idea that a
link has a stronger relation to the query, if there are more keywords 5 that
are associated with that link. If you have that, all that has to be added then
is just the consideration of different values for keywords.

So what we do in principle is the following:

1. go through all links

2. store link

3. for every keyword associated with link add a value calculated from the
value of the keyword to the value of the stored link

4. sort links according to their values

2.2 Mechanism in detail

Of course, it is not exactly as simple as one could think now especially the
value calculated from the value of a keyword needs to be discussed further,
but we will see.

We get from the database after having requested for links connected to the
keywords a list of link-keyword combinations in which one row contains a
link with one of its connected keywords. That means that we get exactly as
much rows in this list as there are keyword associations to links:

rows =
nr.links∑

i=1

nr.keysi

whereby a link in this context is an internally generated and unique id-
number corresponding to a web link (link-id) and the keywords are still just
the keywords which were found as described above (1).

Then we go through this list and write the links into an associative array
with links (ids) as keys and values calculated from corresponding values of
keywords as values of the array. Every additional occurrence of a link in the

5which were found before with the algorithm presented in section 1

7

list then results in an increase of its value in the array dependent on the
value of the corresponding keyword in this row of the list.

The first value of a link is initialised with the half of the value of the
corresponding keyword:

v0 =
vkey

p0

, p0 = 2.

With every subsequent occurrence of the same link a normalised term is
added to the current value of the link:

v = vcur +
1− vcur

p1

· vp2

key, p1 = 2, p2 = 2.

This normalisation again restricts values of links to lie in between 0 and 1 6.
Thereby the dependency of the influence of the key value on the ”reversed”
current value leads to an asymptotic behaviour of the link value towards
1. That means that with increasing value the influence of further keywords
reduces. The parameters p1 and p2 are set to 2 at present. Changing p1 will
result in a different convergence velocity 7 whereas p2 adjusts the influence
of key values. With an increasing p2 good values of keys become more and
more better and bad values become more and more worse.

When this is done, a value should result that gives a more or less good
measure for the strength of the relation between query and link. Thus the
right adjustment of all parameters is indispensable for a good search result
and the system should be continuously observed to ensure that.

→ method set vars source code in A.7 on page 22

2.3 Alternative scheme

We first pursued a slightly different scheme which we gave up because of
reasons explained in section 4.

This scheme included a sorting of the valued keywords. After having done
so we took the first keyword to fetch links associated with it. These links
were evaluated immediately. Then the second best keyword delivered the
next links (or maybe the same) and so on.

6like it is done for values of keys
7increasing will slow it down, decreasing will accelerate it

8

The advantage of this approach is that one can cut off keywords that
seem to be too weak in their value to meaningfully contribute to the values
of links. For example we said that all keywords with a value worse than 1

7

of the maximum key value could be cut off. This is another parameter that
has to be adjusted.

Figure 3 shows this scheme (that is nevertheless quite similar to the one
presented above, if you do not cut off keywords, you even have exactly the
same results as above) on basis of the ’Cognitive Science’ example.

3 Structuring by including groups in search

The web directory provides a built in structure for categorisation of web
links. It would be a shame, if one does not use this to organise the search
results. We explain in this section how we use groups to do that.

Again the relations between groups and query have to be evaluated, but
also the relations between groups and links are important.

3.1 Evaluating groups

For evaluation of groups we fall back on the evaluation of links in double
respects: We use the same method as for the evaluation of links but with
link values in place of key values (see 2.2)

So the groups build a third abstraction layer of the query with a lot of
processing happened in the preceding time. It is therefore no wonder that
search results for groups mostly look very good in relation to the query.

On the other hand links have a very strong impact on the search for groups
when using this method. This is a problem when one searches, for example,
for ’php open source’. Links connected to ’php’ strongly outnumber links
connected to ’open source’. So group ’open source’ gets a rather small value
(in comparison to group ’php programmieren’). To handle this we wrote
a method that searches for groups directly without considering links. This
happens in exactly the same way as it is done when searching for links (see
sections 1 and 2). However, this method is not in use yet. The Problem of
this method is that the more general keywords connected to groups can not
be found when searching for more special things and therefore these groups

9

can be found neither although they maybe contain these special things.
→ method search groups source code in A.6

In addition we wrote another method for searching groups for the process
of entering new links in the web directory. This method takes a list of val-
ued keywords and returns a sorted list of groups which are connected to
exactly these keywords. In between lies again the same evaluation algorithm
as described in 2.2. The difference to the method mentioned above is that
keywords are not generalised in this method.

→ method search groups int source code in A.5

3.2 Allocation of links to groups

We decided to show the group-independent, overall search result first while
at the same time presenting found groups so that the user can change to the
special search result of a group, if he thinks that he will find his wanted web
link easier there.

Within the process of this search no new allocations of links to groups are
done. We rely on the existing connections between links and groups in the
web directory. Not until a user has clicked on a group in the search result
these connections are considered for displaying links. Then just these links
are shown which are associated with the group clicked. Thereby the values of
the links are not changed. Since links in the web directory can be connected
to several groups it is possible that links appear in different groups of the
search result, too.

Figure 1 illustrates the allocation of links to groups when a group was
clicked in the search result.

→ method set vars source code in A.7 on page 23

4 Performance matters

We had to give up the alternative evaluation scheme mentioned in 2.3, be-
cause we experienced severe performance problems when sending a lot of
small requests to the database.

To solve this problem we combined all requests to one, i.e. that we now
formulate just one complicated request for the database which then returns

10

a list containing all information we need. One entry in this list consists of
a link-id a keyword (with id-number, word and lemma/stem) and a group
(also just an id-number).

link keyword group
id id word lemma id

1196 2884 ′science′ ′scienc′ 115
1196 5053 ′cognition′ ′cognitio′ 115
1196 5053 ′cognition′ ′cognitio′ 69

· · ·

This led to an improvement of processing speed on the part of the database.
On the other hand, one easily sees that the size of this list can get quite
large since one link may have many entries in it (as much as combinations of
different keywords and groups). The size of this list could be calculated in
the following way:

rows =
nr.links∑

i=1

nr.keysi · nr.groupsi.

Unfortunately this combination of requests did not solve our performance
problems entirely. For optimisation we worked out so far that we just need
to run through the whole list twice: once for evaluation of keys and links
and thereafter once for evaluation of groups 8. Nevertheless the system still
needs six seconds on average to respond to a query what is not acceptable
for a website. We hope that the change to a faster machine on which NIO is
running further improves this response time.

→ method set vars source code in A.7

5 Conclusion

We introduced here a sophisticated method for searching the web directory
within NIO.

Although this method works already quite good there are still some op-
tions left open for improving it. Especially the right adjustment of all param-
eters could bring an improvement of the search result. One also can think

8which needs the links to be evaluated already

11

of additional features like consulting link titles and comparing them to the
query to make search better.

This documentation should have made one thing clear: our search method
is heavily dependent on the allocation of keywords to links and groups. The
more meaningful associations between keywords and links exist the better is
the quality of our search result. Therefore a well maintained and manifold
system of keywords in NIO helps to assure useful search results, too.

References

[1] Knuth, D.: The Art Of Computer Programming, vol. 3: Sorting And
Searching, Addison-Wesley, pp. 391-392, 1973.

[2] Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions
and reversals, Doklady Akademii Nauk SSSR 163(4) p845-848, 1965
also Soviet Physics Doklady 10(8) p707-710, Feb 1966.

12

A Source code

A.1 parse-query

/**

* takes a query cuts it into single words and stems these,

* stems are generalised by soundex function; sets query instance variables

*

* @param STRING a query to parse

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 28.02.2003 [zib]

*/

function parse_query($query)

{

$this->query = strtolower($query);

$this->a_query = preg_split("/[\s,]+/",$this->query);

if (sizeof($this->a_query)>1 && strlen($this->query)>10)

$this->a_query[] = $this->query;

for ($i=0; $i<sizeof($this->a_query);$i++)

{

$lemma = $this->lemma($this->a_query[$i]);

$this->a_query_lemma[] = $lemma;

if ($i==0)

$s_query = "’".soundex($lemma)."’";

else

$s_query.= ",’".soundex($lemma)."’";

}

$this->query_sound = $s_query;

}

A.2 stem

/**

* produces a stem from a given word through cutting some word endings

* and normalising german umlauts (to ae, ue, oe, ss)

*

* @param STRING a word

13

* @return STRING stemmed word

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 27.02.2003 [zib]

*/

function stem($word)

{

//suffixes that are deleted during stemming

$a_suffix = array(’en’,’es’,’er’,’ung’,’s’,’ing’,’ly’,’n’,’e’);

//substrings that will be replaced during normalisation

$a_string_subst1 = array(’ä’,’ü’,’ö’,

’Ä’,’Ü’,’Ö’,’ß’,

’’ ,’’ ,’’ ,’’ ,’’ ,’’ ,’’);

//replacements

$a_string_subst2 = array(’ae’ ,’ue’ ,’oe’ ,

’ae’ ,’ue’ ,’oe’ ,’ss’ ,

’ue’,’oe’,’ae’,’ue’,’oe’,’ae’,’ss’);

//easiest stem: word

$stem = $word;

//replace umlauts

foreach($a_string_subst1 as $i => $string)

$stem = str_replace($string,$a_string_subst2[$i],$stem);

//just if word has more than 4 letters

if (strlen($stem)>4)

{ //go through suffixes

foreach($a_suffix as $suffix)

{ //if result has more than 4 letters

if (strlen($stem)-strlen($suffix)>4 &&

$suffix == substr($stem,-strlen($suffix)))

//cut special ending

$stem = substr($stem,0,-strlen($suffix));

}

}

return $stem;

}

14

A.3 distance

/**

* calculates distance between two words, against normal definition of distances

* 0 is largest distance (by means of standardization throughout class)

*

* @param STRING first word

* @param STRING second word

* @return REAL estimated distance of words, 1 is best, 0 is worst

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 27.02.2003 [zib]

*/

function distance($word1, $word2)

{

return 1 - levenshtein($word1, $word2)

/ max(strlen($word1),strlen($word2));

}

A.4 get-key-value

/**

* evaluates a key in comparison to query, uses a distance measure

* between stems

*

* @param ARRAY containing key as original string and lemma

* array([’wort’]=>STRING

* [’lemma’]=>STRING)

* @return REAL estimated value of key, 1 is best, 0 is worst

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 27.02.2003 [zib]

*/

function get_key_value($line)

{

$o_db_keys = new nio_simple_data(NIODB_DBNAME,NIODB_CONNECT);

$o_db_keys->NIO_Connect(’w’,’s’);

foreach($this->a_query_lemma as $lemma)

{

15

if (strstr($this->query,$line[’wort’]) != FALSE)

{

$o_db_keys->Update(array(’lemma’=>$this->lemma($line[’wort’])),

’schluesselwortnr = ’.$line[’schluesselwortnr’]);

$key_value = 1;

break;

}

else

{

$line[’lemma’] = $this->lemma($line[’wort’]);

$o_db_keys->Update(array(’lemma’=>$line[’lemma’]),

’schluesselwortnr = ’.$line[’schluesselwortnr’]);

if ($lemma == $line[’lemma’])

$key_value = max($key_value,0.9);

else

{

$key_value = max($key_value,

0.8*$this->distance($lemma,$line[’lemma’]));

}

}

}

return $key_value;

}

A.5 search-groups-int

/**

* similar to search_groups, but gets an array of evaluated keywords:

* evaluates and sorts groups according to the values of entered keywords

* and quantity of connections between groups and keys

*

* @param ARRAY valued keywords: array([keyword1]=>value,

* [keyword2]=>value,

* ...)

* @return ARRAY groups sorted according to their evaluation,

* array([group_id1]=>highest value,

[group_id2]=>second highest value,

...)

16

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 31.03.2003 [zib]

*/

function search_groups_int($a_query)

{

if ($a_query)

{

$this->a_query = $a_query;

foreach($a_query as $word=>$wvalue)

{

$s_query.="’".$word."’,";

}

$s_query = substr($s_query, 0, (strlen($s_query)-1));

}

else

return ’can\’t search, no query’;

$o_db_data = new nio_data(NIODB_DBNAME,NIODB_CONNECT);

$o_db_data->NIO_Connect();

$a_query_data = $o_db_data->Execute("

select gruppe.idnr as gruppennr,

gruppe.bezeichnung as titel,

schluessel.idnr as schluesselwortnr,

schluessel.bezeichnung as wort,

schluessel.lemma

from nio_schluessel schluessel,

nio_gruppe gruppe,

nio_gruppe_schluessel gs

where schluessel.bezeichnung in ($s_query)

and schluessel.domaene=’w’

and schluessel.idnr=gs.schluessel_idnr

and gs.gruppe_idnr not in (1,2,3)

and gs.gruppe_idnr=gruppe.idnr

and gruppe.domaene=’w’

order by gruppennr, schluesselwortnr

");

17

$o_db_data->NIO_Disconnect();

if(is_array($a_query_data))

{

foreach ($a_query_data as $line)

{

$group_id = $line[’gruppennr’];

$key_id = $line[’schluesselwortnr’];

$value = $a_query[$line[’wort’]];

if ($a_value_groups[$group_id])

{

$current_value = $a_value_groups[$group_id][’value’];

$a_value_groups[$group_id][’value’] = $current_value

+ (1-$current_value)

/ 2

* pow($value,2);

}

else

$a_value_groups[$group_id] = array(

’value’=>$value/2,

’titel’=>$line[’titel’]

);

}

asort($a_value_groups);

$a_sorted_groups = array_reverse($a_value_groups,TRUE);

return $a_sorted_groups;

}

else

return ’no groups found’;

}

A.6 search-groups

/**

* similar to search_all, but works completely without consideration of links:

* evaluates keys and according to this evaluation and quantity of connections

18

* between groups and keys evaluates and sorts groups

*

* @param STRING a query

* @return ARRAY groups sorted according to their evaluation,

* array([group_id1]=>highest value

[group_id2]=>second highest value

...)

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 28.02.2003 [zib]

*/

function search_groups($query)

{

if (!$this->query)

if ($query)

$this->parse_query($query);

else

return ’can\’t search, no query’;

$o_db_data = new nio_data(NIODB_DBNAME,NIODB_CONNECT);

$o_db_data->NIO_Connect();

$a_query_data = $o_db_data->Execute("

select gruppe.idnr as gruppennr,

schluessel.idnr as schluesselwortnr,

schluessel.bezeichnung as wort,

schluessel.lemma

from nio_schluessel schluessel,

nio_gruppe gruppe,

nio_gruppe_schluessel gs

where schluessel.phonetik in ($this->query_sound)

and schluessel.domaene=’w’

and schluessel.idnr=gs.schluessel_idnr

and gs.gruppe_idnr not in (1,2,3)

and gs.gruppe_idnr=gruppe.idnr

and gruppe.domaene=’w’

order by gruppennr, schluesselwortnr

");

19

$o_db_data->NIO_Disconnect();

foreach ($a_query_data as $line)

{

$group_id = $line[’gruppennr’];

$key_id = $line[’schluesselwortnr’];

if (!$a_value_keys[$key_id])

{

$a_value_keys[$key_id] = $this->get_key_value($line);

}

$value = $a_value_keys[$key_id];

if ($a_value_groups[$group_id])

{

$a_value_groups[$group_id] = $a_value_groups[$group_id]

+ (1-$a_value_groups[$group_id])

/ 2

* pow($value,2);

}

else

$a_value_groups[$group_id] = $value/2;

}

asort($a_value_groups);

$a_sorted_groups = array_reverse($a_value_groups,TRUE);

return $a_sorted_groups;

}

A.7 set-vars

/**

* parses query, fetches result delivered by databank for soundex-normalized

* query, evaluates keys, with that evaluates links and sorts them, then

* evaluates groups and sorts them, initializes new http_vars used for pagelinks

*

* @param OBJECT a databank connection

* @param STRING $postfix Postfix var for httpvars

* (desktop-style: different group-pagelinks)

20

* @return ARRAY array([0]=>array([link_id1]=>highest value

[link_id2]=>second highest value

...)

[1]=>array([group_id1]=>array([’value’]=>highest value)

...

[group_id of current group]=>

array([’value’]=>value

[’links’]=>links in group)

...))

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 27.02.2003 [zib]

*/

function set_vars($o_db_data,$postfix=NULL)

{

$this->parse_query($this->http_vars[’query’]);

if ($this->query == ’’)

{

$this->num_links = 0;

return array(NULL,NULL);

}

$a_query_data = $o_db_data->Execute("

select link.idnr as linknr,

gruppe.idnr as gruppennr,

schluessel.idnr as schluesselwortnr,

schluessel.bezeichnung as wort,

schluessel.lemma

from nio_verweis link,

nio_schluessel schluessel,

nio_gruppe gruppe,

nio_schluessel_verweis sv,

nio_gruppe_verweis gv

where schluessel.phonetik in ($this->query_sound)

and schluessel.domaene=’w’

and schluessel.idnr=sv.schluessel_idnr

and sv.verweis_idnr=link.idnr

and link.domaene=’w’

and link.idnr=gv.verweis_idnr

21

and gv.gruppe_idnr not in (1,2,3)

and gv.gruppe_idnr=gruppe.idnr

and gruppe.domaene=’w’

order by linknr, schluesselwortnr, gruppennr

");

foreach ($a_query_data as $line)

{

$link_id = $line[’linknr’];

$key_id = $line[’schluesselwortnr’];

if (!$a_value_keys[$key_id])

{

$a_value_keys[$key_id] = $this->get_key_value($line);

}

if ($link_id != $prev_link_id or $key_id != $prev_key_id)

{

$value = $a_value_keys[$key_id];

if ($a_value_links[$link_id])

{

$a_value_links[$link_id] =

$a_value_links[$link_id]

+ (1-$a_value_links[$link_id])

/ 2

* pow($value,2);

}

else

$a_value_links[$link_id] = $value/2;

}

$prev_link_id = $link_id;

$prev_key_id = $key_id;

}

if ($this->http_vars[’grp’])

{

$group = $this->http_vars[’grp’];

}

else

{

22

asort($a_value_links);

$a_sorted_links = array_reverse($a_value_links,TRUE);

}

/*-----------------------------GROUPS-------------------------------*/

foreach($a_query_data as $line)

{

$group_id = $line[’gruppennr’];

if ($group)

{

$value = $a_value_links[$line[’linknr’]];

if ($group == $group_id)

{

$a_value_groups[$group_id][’links’][$line[’linknr’]] = $value;

}

}

else

$value = $a_sorted_links[$line[’linknr’]];

if ($a_value_groups[$group_id])

{

$a_value_groups[$group_id][’value’] =

$a_value_groups[$group_id][’value’]

+ (1-$a_value_groups[$group_id][’value’])

/ 2

* pow($value,2);

}

else

$a_value_groups[$group_id][’value’] = $value / 2;

}

function compare_value_groups($a_key_value1, $a_key_value2)

{

if ($a_key_value1[’value’] == $a_key_value2[’value’])

return 0;

return $a_key_value1[’value’] > $a_key_value2[’value’] ? -1 : 1;

}

23

if ($group)

{

$a_tmp = $a_value_groups[$group][’links’];

asort($a_tmp);

$a_sorted_links = array_reverse($a_tmp,TRUE);

}

/*-----------------------------HTTP_VARS-------------------------------*/

if ($this->http_vars[’position’.$postfix])

{

$this->position=$this->http_vars[’position’.$postfix];

}

else

{

$this->position = 0;

}

// store size of search result

$this->num_links = sizeof($a_sorted_links);

// if "entries per page" is submitted

if ($this->http_vars[’epp’.$postfix])

// store it in instance variable

$this->epp=$this->http_vars[’epp’.$postfix];

else // else

$this->epp = 10; // set epp to default (10)

return array ($a_sorted_links,$a_value_groups);

}

A.8 search-all

/**

* if $this->query is not set it is set to query-parameter, calls

* set_vars, delivers result according to parameters

*

* @param BOOLEAN specifies if groups should be delivered

* @param BOOLEAN specifies if links should be delivered

24

* @param STRING a query; has just effect, if $this->query is not set!

* @return ARRAY from set_vars, if $groups and $links: array([0]->links

* [1]->groups)

* if $groups: array(groups)

* if $links: array(links)

* @author Sebastian Bitzer <sebazi@gmx.net>

* @version 28.02.2003 [zib]

*/

function search_all($goups=TRUE,$links=TRUE,$query=null)

{

if (!$this->query)

if ($query)

$this->query = strtolower($query);

else

return ’can\’t search, no query’;

$o_db_data = new nio_data(NIODB_DBNAME,NIODB_CONNECT);

$o_db_data->NIO_Connect();

$a_result=$this->set_vars($o_db_data);

$o_db_data->NIO_DISCONNECT;

if ($groups and $links)

return $a_result;

else if ($groups)

return $a_result[1];

else if ($links)

return $a_result[0];

else

return ’no return specified, when calling search_all!!!’;

}

25

B Graphical overview

Figure 1: Allocation of links to a group: link-id(value)

26

Figure 2: From query to valued keywords

27

Figure 3: From valued keywords to a sorted link list (alternative scheme)

28

	From query to valued keywords
	Stemming
	Generalisation
	Evaluation of keywords by distance measure
	Putting all together

	From valued keywords to a sorted link list
	Principle mechanism
	Mechanism in detail
	Alternative scheme

	Structuring by including groups in search
	Evaluating groups
	Allocation of links to groups

	Performance matters
	Conclusion
	Source code
	parse-query
	stem
	distance
	get-key-value
	search-groups-int
	search-groups
	set-vars
	search-all

	Graphical overview

