
8.3.1.4 volatile Fields

As described in §17, the Java language allows threads that access shared variables to keep
private working copies of the variables; this allows a more efficient implementation of multiple
threads. These working copies need be reconciled with the master copies in the shared main
memory only at prescribed synchronization points, namely when objects are locked or unlocked.
As a rule, to ensure that shared variables are consistently and reliably updated, a thread should
ensure that it has exclusive use of such variables by obtaining a lock that, conventionally,
enforces mutual exclusion for those shared variables. 

Java provides a second mechanism that is more convenient for some purposes: a field may be
declared volatile, in which case a thread must reconcile its working copy of the field with the
master copy every time it accesses the variable. Moreover, operations on the master copies of
one or more volatile variables on behalf of a thread are performed by the main memory in exactly
the order that the thread requested.

If, in the following example, one thread repeatedly calls the method one (but no more than
Integer.MAX_VALUE (§20.7.2) times in all), and another thread repeatedly calls the method two:

class Test {

static int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

then method two could occasionally print a value for j that is greater than the value of i,
because the example includes no synchronization and, under the rules explained in §17, the
shared values of i and j might be updated out of order. 

One way to prevent this out-or-order behavior would be to declare methods one and two to be
synchronized (§8.4.3.5):

class Test {

static int i = 0, j = 0;

static synchronized void one() { i++; j++; }

static synchronized void two() {
System.out.println("i=" + i + " j=" + j);

}

}



This prevents method one and method two from being executed concurrently, and furthermore
guarantees that the shared values of i and j are both updated before method one returns.
Therefore method two never observes a value for j greater than that for i; indeed, it always
observes the same value for i and j. 

Another approach would be to declare i and j to be volatile:

class Test {

static volatile int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

This allows method one and method two to be executed concurrently, but guarantees that
accesses to the shared values for i and j occur exactly as many times, and in exactly the same
order, as they appear to occur during execution of the program text by each thread. Therefore,
method two never observes a value for j greater than that for i, because each update to i must
be reflected in the shared value for i before the update to j occurs. It is possible, however, that
any given invocation of method two might observe a value for j that is much greater than the
value observed for i, because method one might be executed many times between the moment
when method two fetches the value of i and the moment when method two fetches the value of
j. 

See §17 for more discussion and examples.

A compile-time error occurs if a final variable is also declared volatile.


