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Exact Constraint Satisfaction for Truly Seamless Parametrization

M. Mandad

and M. Campen

Osnabriick University, Germany

Figure 1: Left: Parametrization of a mesh, with so-called seamless transitions across cuts (red). Right: Pieces of this mesh in parameter space
R? near the cut (both sides brought into common coordinate charts via transitions). Notice the gaps/overlaps due to numerical inaccuracies
in the parametrization. As these typically are of minuscule magnitude, thus virtually invisible, they were amplified by a large factor here for
clarity. The green instances show the result obtained by our method, with no inconsistencies at all — the parametrization is truly seamless.

Abstract

In the field of global surface parametrization a recent focus has been on so-called seamless parametrization. This term refers
to parametrization approaches which, while using an atlas of charts to enable the handling of surfaces of arbitrary topology,
relate the parametrization across the cuts between charts via transition functions from special classes of transformations. This
effectively makes the cuts invisible to applications which are invariant to these specific transformations in some sense. In actual
implementations of these parametrization approaches, however, these restrictions are obeyed only approximately; errors stem
from the tolerances of numerical solvers employed and, ultimately, from the limited accuracy of floating point arithmetic. In
practice, robustness issues arise from these flaws in the seamlessness of a parametrization, no matter how small. We present
a robust global algorithm that turns a given approximately seamless parametrization into an exactly seamless one — that still
is representable by standard floating point numbers. It supports common practically relevant additional constraints regarding
boundary and feature curve alignment or isocurve connectivity, and ensures that these are likewise fulfilled exactly. This allows
subsequent algorithms to operate robustly on the resulting truly seamless parametrization. We believe that the core of our
method will furthermore be of benefit in a broader range of applications involving linearly constrained numerical optimization.

CCS Concepts
e Computing methodologies — Computer graphics; Mesh models; Mesh geometry models; Shape modeling;

1. Introduction

Optimization problems are at the core of many tasks in Computer
Graphics and Geometry Processing. More precisely, one often has
to deal with some form of constrained optimization. Constraints are
imposed on the problem’s variables to ensure that the computed so-
lution exhibits certain properties required by a specific application.
These constraints can be linear or nonlinear, and they can require
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equality or, to impose certain bounds, inequality between expres-
sions formulated in terms of the variables.

In practical implementations, the result of a numerical optimiza-
tion procedure rarely is a true solution to the problem: due to in-
accuracies of the typically employed floating point arithmetics and
possibly due to tolerances of the solver, neither is the result a true
optimum, nor are the constraints satisfied precisely.
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While small deviations from being a true optimum are relevant
for the success or failure of subsequent processing steps only in
very specific, rather uncommon scenarios, the binary question of a
constraint being satisfied or violated can be entirely decisive. For
this it may not even matter how slightly it is violated (cf. Sec. 6.2).
A relevant question thus is:

How can constraint violations be avoided entirely?

For certain types of optimization problems, one might be able
to get around this issue through the use of solvers based on adap-
tive precision arithmetics. However, not only can this cause a huge
performance impact (cf. Sec. 6.1), it will in general yield solutions
not representable by standard floating point numbers, and conver-
sion will lead to constraint violations again. Thus, all subsequent
processing steps would need to be compatible with, and carried out
based on the same adaptive precision arithmetics as well.

1.1. Exact Constraint Satisfaction despite Limited Precision
To avoid all these issues, our goal is to obtain a result which

e exactly satisfies all constraints,
e while being expressed in standard floating point numbers.

We present a method that handles the case of optimization prob-
lems with linear equality constraints. It operates as a post-process
and thus is independent of the type of solver employed and the na-
ture (linear, non-linear, convex, non-convex, ... ) of the underlying
optimization problem.

More precisely, our method takes as input the result of a solver,
i.e. an assignment of variables, which typically does not satisfy the
linear equality constraints exactly. It then finds a nearby assign-
ment of variables (in the standard floating point numbers) that ex-
actly (not only in floating point arithmetic) satisfies the constraints.
To illustrate the idea, assume constraints are univariate, i.e. of type
X; = ¢;, where x are variables and ¢ are constants expressed as float-
ing point numbers. In this simplest possible of all non-trivial cases,
one simply needs to override each variable x; involved in such a
constraint by the constant ¢; in the solver’s output. This, obviously,
leads to exact constraint satisfaction. As soon as a constraint is mul-
tivariate, involving more than one variable, the situation becomes
significantly more complicated — here our method comes into play.

1.2. Seamless Parametrization

A good example (and original motivation for our work) that in-
volves such multivariate constraints is surface parametrization —
one of the fundamental mathematical tools made use of in count-
less geometry and graphics applications. While simple instances
involve merely point pinning constraints (of the above univariate
type), lately more advanced instances with constraints for feature
alignment, boundary alignment, seamlessness across charts, and
isocurve connectivity came into focus, see Fig. 1 and Sec. 5.

Algorithms that build on such parametrizations, for instance for
mesh generation tasks, may suffer from severe robustness issues
when these constraints are not satisfied, as in Fig. 1. The level of
robustness may even be independent of how strongly these are vi-
olated — in certain scenarios the slightest violation can guarantee
failure, unless application-specific workarounds are designed.

We discuss this in more detail and evaluate our method in this use
case in Sec. 6. Our approach is generic and can in principle be ap-
plied to any use case involving linearly constrained optimization.
Its performance depends on the number and structure of the con-
straints, though, and it may be impractical for certain applications.
Analysis in other fields is thus an interesting topic for future work,
and at this point we make no claims about practical genericity.

2. Overview

The generic problem we tackle is an optimization problem with
linear equality constraints

n}inE(x) st. Cx=b. (1)

True minimization in the floating point (or any other discrete) do-
main is, in general, NP-hard. In practice thus approximative ap-
proaches are common. Our goal is to approximate only the mini-
mality, but not the constraint satisfaction, because this can be es-
sential for the correctness of subsequent processing steps. This is,
of course, only possible if matrix C and vector b are exactly repre-
sentable in the first place. We thus assume that the entries of C and
b are rational or, equivalently, integer.

The central idea of our method: take an approximate minimizer
X of (1) which approximately satisfies the constraints (CX =~ b) —
obtained by an arbitrary solver — and project it to a point x in the
solution space Q = {x | Cx = b} (the kernel of C in case b = 0). The
key challenge: we require not only x € Q, butx € QNF", where F
is the (discrete) set of values representable by a given floating point
number type, and n the dimension of x. The result x is thus, due to
x € F", representable by standard floating point numbers — but at
the same time, due to x € Q, it exactly satisfies the constraints under
exact (real number) arithmetic. In essence, this paper describes how
to find one such point x.

We demonstrate the effectiveness of our approach in the context
of seamless parametrization, where exact constraint satisfaction is
particularly important.

3. Related Work

Seamless Parametrization

Parameterizing a manifold surface over (a subset of) R? is one of
the fundamental mathematical tools made use of in countless ap-
plications [SPRO6]. While locally (and on, e.g., disk-topology sur-
faces) this is always possible (as per the very definition of a man-
ifold), global parametrization of arbitrary-topology surfaces can
only be facilitated through the use of an atlas of charts.

Across chart boundaries (or cuts), the local parametriza-
tions are related by transition functions, which can be arbitrary
[SCOGLO02, BCGBO0S8, SSP08] or of restricted classes of trans-
formations [TACSD06, KNP07,BZK09, NPPZ12,MZ12,BCE* 13,
MZ13,MPZ14,KCPS15,APL15,AL15,CZ17,BCW17] . Most im-
portantly, seamless transitions [BZK09, MZ12, RNLL10] are com-
monly employed for mesh generation purposes, cf. Fig. 1. In this
context also even further restricted classes of transitions, e.g. with
quantized/integer translational components [BCE*13,CBK15], are
of relevance.
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Inaccurate Seams

The issue of (even just slightly) violated constraints in seamless
parametrizations was addressed before [EBCK13, LBK16]. Unfor-
tunately, the parametrization sanitization described in these works
fundamentally relies on the parametrization being a quantized, in-
teger grid parametrization [BCE* 13, CBK15]: it assumes that cer-
tain key entries in x are supposed to be exact integers and rounds
them accordingly. This rounding cannot simply be omitted as it is
responsible for resolving most of the potential inaccuracy issues.

Therefore, this kind of sanitization cannot be applied to general
seamless parametrizations. While quantized seamless parametriza-
tions are of particularly high relevance in practice, note that re-
cent methods for their creation work with and rely on initially
continuous seamless parametrizations [CBK15]. In other fields,
methods likewise rely on continuous seamless parametrizations
[MPKZ10, RRP15, CZ17] — and suffer from robustness issues if
these are not exact, cf. Sec. 6.2.

The problem is much more involved when considering general
(non-quantized, non-integer) parametrizations. While [EBCK13,
LBK16] only need local operations, we have to deal with entirely
global interdependencies, induced by the network formed by the
involved constraints. At the heart of our approach we thus oper-
ate with a global equation system, solved by a custom-tailored al-
gorithm to not introduce any numerical errors. This global strat-
egy furthermore allows for the consideration of a variety of rele-
vant constraints besides seamless transition constraints, cf. Sec. 5.1.
None of these are considered by the local sanitization procedures.

Exact Numerics

A variety of techniques for error-free numerical processing have
been described, from exact predicates [She97] over adaptive pre-
cision numbers [Yap97, G*15] to exact solvers [GS00, Gir99,
GSW16]. These are not easily applicable in our case: the optimiza-
tion of constrained parametrizations is already hard and slow with
fast standard floating point arithmetic. But even if performance im-
pacts (cf. Sec. 6.1) can be tolerated: the results are generally not
representable by standard floating point numbers without error. We
instead take the (inaccurate) output of fast standard solvers and re-
pair it while making it representable by standard numbers.

Other works, e.g. [MRLO1], deal with constraints to be satisfied
relative to a specific floating point standard, rounding mode, and
evaluation procedure. This is of interest, e.g., for program analysis,
but not of benefit in our context; the fact that a constraint is con-
sidered satisfied in a specific notion does not imply that subsequent
calculations (even if carried out exactly) will turn out as expected
and be consistent. Already linear combinations of constraints are
not generally satisfied in this case. Our results, by contrast, exactly
satisfy constraints — relative to exact, infinite precision arithmetic.

4. Exact Constraint Satisfaction

We begin by describing our key algorithms to project an arbitrary
vector X € R to a vector x € R” that exactly satisfies

Cx=b, CeZ"" belZ",
ie. x € Q, where Q = {x € R" | Cx = b}. We note that the anal-
ogous problem with C € Q"*", b € Q" can always be reduced to
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this integer setting, simply by multiplying each system row with
the least common multiple of its entries’ denominators. We will
thus assume an integer matrix C and vector b in the following.

Afterwards, in Sec. 4.3, we augment the procedure to yield a
resultx € QNF", where FF corresponds to a finite precision number
type, like the ubiquitous IEEE 754 floating point numbers.

Structurally, our approach has ties to the classical master-slave
method employed to handle multi-variate constraints in finite ele-
ment systems [CMPWO1, Ch. 13.1]. Variables x are separated into
two sets X|fee and x|imp] of free and implied variables, respectively,
such that the free ones form an unconstrained system, and values
for x|impi can be computed (cf. Eq. 2) from x|gee via transformed
constraint equations. In theory (assuming exact arithmetic) this al-
lows performing the desired projection into Q by simply setting
X|free < X|free and deducing x|impi. In practice, however, we need
to deviate in order to overcome a series of challenges:

e The transformation of constraint equations C to yield expres-
sions for the computation of x|imp1 from X|free needs to be car-
ried out in an exact manner. We achieve this through the use of
integer arithmetic (Sec. 4.1, Alg. 1 and 2).

e The values for x|fee cannot actually be chosen freely: we not
only want them to be representable by floating point numbers,
X|free € F”, but also the values of the implied variables X|impl,
that non-trivially depend on them (Sec 4.3, Alg. 3 and 4).

e The computation of X|imp € IF ™ from X|free needs to be carried
out in an exact manner, without introducing any rounding errors
(Sec. 4.3, Alg 5).

4.1. Fraction-Free System Transformation

We transform the constraint system matrix C into integer reduced
row echelon form (IRREF) C € Z™*" which is defined as follows:

e if a row has a pivor (a first non-zero element) in column i, the
row above it (if exists) has a pivot in column j < i,

e cach column that contains a pivot contains no other non-zero
element.

The transformation into this form can be performed entirely in
Z, i.e. without introducing any numerical inaccuracies. We first
transform the matrix C into integer (non-reduced) row echelon
form (IREF) (i.e. elements above pivots may be non-zero) using
a fraction-free integer version of Gaussian elimination for rank-
deficient rectangular matrices (adapted from [Durl2, Alg. 1] based
on [Tur95, Alg. 6]). Then we follow up with fraction-free Jordan
steps to cancel all elements above pivots. These algorithms are
given below as Algorithms 1 and 2.

Remarks: the lower left triangle of C is known to become zero
through Gaussian elimination; for efficiency, this part of the ma-
trix is not modified by the algorithms, and the following algorithms
ignore it accordingly.

The division by the greatest common divisor per matrix row in
Algorithms 1 and 2 is to remove common factors and thereby re-
duce the growth of values as much as possible in Z. This can be
beneficial as, as we will see in the following, the magnitude of the
matrix entries has some influence on how freely the values for vari-
ables X|free can be chosen.
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Algorithm 1 IREF by fraction-free Gaussian Elimination
fork=1,....m—1do
if Ckk =0 then
l<—min{l>k|Clk7éO}
if / undefined then continue
Cr = C
end if
fori=k+1,...,mdo
for j=k+1,...,ndo
Cij < (Cu Cij — Cik Cyj)
end for
bi + (Crbi — Cig by
0+ gcd(Gy, b;) > gcd of all elements of row i and b;
Ci«Ci/o
b,’ < b,-/o
end for
end for

> pivoting required

> find pivot in column
> column is all zeroes
> Swap rows

> elimination (row i by k)

Algorithm 2 IRREF by fraction-free Jordan Elimination
for k=1m,...,2do
[+ min{l > k| Cy # 0}
fori=k—1,...,1do

> find row pivot
> elimination (row i by k)

c+Cy
for j=n,...,ido
if j > k then
Gij + (Cu Cij —cCy; )
else
Cij + (CuCij)
end if
end for
b; (Ckl b; — Cbk)
0 + ged(Cy, b)) > gcd of all elements of row i and b;
Ci+Ci/o
bi < b,-/o
end for
end for

4.2. Evaluation of Implied Values

Let the result of applymg Algorithms 1 and 2 to C,b be denoted
C, b. The matrix C contains i < m rows with pivots, and m — i
rows of all zeroes at the bottom, due to potential linear dependen-
cies in the constraints in C. Based on this matrix C, it is now con-
ceptually easy to construct a solution, i.e. a vector x € R of variable
assignments, such that Cx = b (and thus Cx = b) — assuming theo-
retical real-valued arithmetics for now.

To this end we can treat the 77 = n — 1 variables corresponding to
columns without pivots as free variables X|gee, and the 7 variables
corresponding to columns with pivots as implied variables X|mpl.
Values for free variables can be chosen arbitrarily, while the implied
variables are to be computed from these such that Cx = b:

R 1 n R R n R X;
Xn(j) = bj—— Z Ciixi = bj— Z Ciji ! 2)

Cin(j) i=n(j)+1 i=n()+1 Cin(i)

[N

Here m(j) is the index of the pivot, the first non-zero element, in
row j. Note that the sum only depends on free variables, not on any

implied variables: whenever x; is an implied variable, ¢ i is 0 in
this sum because C is in IRREF.

A solution x € R” that satisfies all constraints exactly while be-
ing close to X can thus be obtained by choosing x; = X; for each free
variable, and computing values for the implied variables via (2).
Note that x determined in this (asymmetric) way is, in general,
not optimally close to X; alternative constraint handling techniques,
like Lagrange multipliers or the penalty method, however, are not
amenable to the strategy we present in the following to achieve nu-
merical exactness in tandem with floating-point-representable re-
sults. Under the practically realistic assumption that X violates con-
straints only slightly (in the targeted parametrization use case we
typically encounter relative violations around 10~%), the difference
is likely to be small, anyway.

4.3. Numerical Exactness

The fraction-free matrix transformations by Algorithms 1 and 2
happen entirely in Z, thus can be carried out without any error using
integer number types — given that no overflow occurs (cf. Sec. 7).

The challenge of achieving exact constraint satisfaction, in par-
ticular achieving it using values x; € IF, thus is concentrated to the
step of evaluation (2).

For a free variable x;, we could simply choose the value F(%;),
where F(x) = argminycr ||x — y|| “rounds” to F — if &; is not given
in this form already anyway.

For a dependent variable x;, however, we need to ensure that for-
mula (2) can be evaluated without error and that it yields a result
x; € F. We employ three measures to achieve this:

e Values for free variables are chosen from a (fixed point) subset
Fs C T, so as to guarantee that the sum in (2) can be evaluated
without error in [F and yields a result that is from [Fg as well.

e Values for free variables are chosen such that the division in (2)
is without error in [ and yields a result that is from [Fg.

e The computation of the sum in (2) (effectively a dot product) is
performed by a special algorithm that guarantees that no inter-
mediate value exceeds the range representable exactly by F.

Fixed Point Representation. When performing the additions,
subtractions, and multiplications in the evaluation (2) using a float-
ing point representation, there is a potential for numerical error due
to the floating point, i.e. the varying exponent. For instance, adding
a number a with floating point exponent k 4/ to a number b with
exponent k and subtracting a again, does not yield the original num-
ber b because its [ least significant bits get lost — unless they were
zero in the first place. As pointed out by Ebke et al. [EBCK13],
numerical error can thus be avoided by making sure that the / least
significant bits of any number with floating point exponent K — /
involved in an operation are zero to begin with, where K is the
maximum exponent over all involved values (initial, intermediate
results, final result). We determine the largest floating point expo-
nent K over all values of ¥ as K = max;[log, |%;|] + 1 (where the
additional 1 adds a margin), and define § = 2K,

Let Fg_,x C IF be the set of floating point numbers with floating
point exponent £ < K and their K — k least significant bits being
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zero. A value v € F can be truncated to a value v € Fg by the
floating point operation v < (v +5,8) — 5,8, where s, is the sign
of v [EBCK13]. We define F(v) = v’ through this operation.

Note that every addition, subtraction, or multiplication of values
from Fg is exact in Fg as long as the result does not exceed the
range (—8,+38). The same holds for a multiplication of a value v
from Fg with a value n € Z (as it is equivalent to an n-fold addition
of v € Fy).

Divisibility. In order to guarantee that the division of the sum by

¢ € Z is exact in Fg, we choose the free variables such that

Jn(j)
each summand C ix; is exactly Fs-divisible by ¢ n(j)- Each row j

poses such a condition on each free variable x; (unless ¢ i = 0).

We can conservatively meet all these conditions on a free vari-
able x; by choosing it such that it is Fg-divisible by the least com-
mon multiple of the pivots of all rows j where Cj; # 0, i.e.

X [mg lemy ;003 Cin(j)-
We achieve this by setting the value of free variables as follows:
X Fs(f,’/&)&, where {; = lcm{j\éji#O}éjn(j) €L

This is spelled out in Algorithm 4.

Dot Product Evaluation. The dot product in (2) is evaluated by
a special procedure that guarantees that no intermediate value ex-
ceeds the final value or the range of values chosen for the free
variables. This guarantees that the result is exact and from Fg as
detailed above, if only this final result does not exceed the range
(—8,+39) (cf. Sec. 7).

AsC ji € Z, the dot product can be written as a plain sum where
each x;/- appears ¢ ji times as summand. We sum these summands
in a specific order: if an intermediate sum is positive, a negative
summand is added next (and vice versa), unless there is none left.

The algorithm for consistent evaluation, including the safe dot
product Algorithm 5, is given as Algorithm 3.

5. Seamless Parametrizations

A piecewise linear parametrization F of R2: W2
a triangle mesh M consists of a linear i

map per triangle T; to the plane, f; : T; — A
R. Such a map f; is represented by coor- Ui 0 Ui,1
dinates u; o, u; 1,u;» € R? at each of T;’s three vertices. To enable

individual coordinates per triangle, these are not represented per
(shared) vertex, but per wedge (a corner of a triangle).

Parametrization F is seam-

less if fqr each edge e;j, l?e— fz(@_\f}(b)
tween triangles T;, T;, with g
incident vertices a, b, there is “

a rigid transformation g;; :
u— r;j(u)+t;; with rotation fila) fj(a)
r;; by angle k;;%/2, k;; € Z, and translation t;; € R? such that

g;;(fi(a)) =f;(a), g;ED))=£;). (3)
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Algorithm 3 Evaluation
fork=n,...,1do
if column & contains no pivot then
D<+—g
fori=1,...,min(k,m) do
if Cy # 0 then
D« DU{Ci(}

> collect divisors

end if
end for
X < makeDiv(%;,D) > fix free variable
else > compute implied variable

J < index of row containing the pivot
X by — safeDot({(C’ji,xi/éjk) | k+1<i<n})
end if
end for

Algorithm 4 makeDiv (x,D)

if D= & then return Fg(x)
d < Iem(D)
return Fg(x/d)d > multiple of d, thus divisible by each e € D

Algorithm 5 safeDot(S)

P+ {(Jc|,+|x]) | (c,x) € SAex > 0} > postive summands
N+ {(lc|,—|x]) | (c,x) € SAcx <0}  © negative summands
r+<0 > accumulator
while P # &V N # & do
if P# SN (r<0VN =) then
P+ P\(c,x)
k < min(c, | (8—r)/x])
rr+kx
ifk <cthenP <+ PU{(c—k,x)}
else
N < N\(c,x)
k « min(c, | (=8—r)/x])
ré—r+kx
ifk <cthenN < NU{(c—k,x)}
end if
end while
return r

> take arbitrary element

> re-add remainder

> take arbitrary element

> re-add remainder

The sum of parametric angles around each vertex thus is a multi-
ple of 7/2. Vertices where it is 27 are called regular, others singular.

An edge ¢;; for which g;; is not identity is called a cut edge.
Commonly, methods for the generation of seamless parametriza-
tions aim to minimize the number (or total length) of cut edges. For
topological reasons, at least a cutgraph which includes all singular
vertices has to be included [BZK09], as in Fig. 1 left.

5.1. Constraints

We identify four kinds of commonly relevant constraints. Besides
the above per-edge transition constraints (3), which ensure seam-
lessness, there are alignment constraints, connection constraints
and cycle constraints, depending on the specific use case.
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Transition Constraints. For each edge ¢;; £:(0)

between triangles T;,7; and vertices a,b, f; (b)
equations (3) impose constraints relating the /
parametrizations of two adjacent faces to
each other. As t;; is arbitrary, the constraint fila) 1(a)
can equivalently be simplified to

rij(fi(a) —£i(b)) =fj(a) —£; (D). ©)

Note that this actually represents two constraint equations, as we
are working with two-dimensional coordinates u, i.e. f(-) € R>.

The integer rotation coefficient k;; per edge is fixed a priori — it
can be given as additional input to our method or extracted from
the parametrization as detailed in [EBCK13].

Alignment Constraints. For sharp features or

boundaries, it is often required that isocurves of f,o(b) f,ga)
the parametrization align with them [BZK09]. To N
ensure this, one has to constrain one component of

the parameters u of the two vertices a, b incident to the feature or
boundary edge in triangle 7; to be equal:

fi(a)|x =)k, )

where k is either 0 or 1 and |, extracts the Kt component of a vector.

Connection Constraints. For pur- STl Ty
poses such as mesh or layout struc-  fj(a) “p5--<%_ £;(b)
ture optimization, it can be desirable ~o

to constrain the connectivity of certain surface points a, b (feature
vertices, singularities, etc.) in terms of parametrization isocurves. If
one intends to prescribe the precise path of the isocurve between a
and b, this can be achieved using the above feature alignment con-
straints. If one, however, wants to enforce that they are connected
by some isocurve, while leaving the concrete path to optimization,
so-called connection constraints can be used [MPKZ10]:

Let p be a path on the input mesh starting at vertex a and ending
at vertex b while passing through the faces T, ..., Ty, . Further, let

g, =85, .5, O 08 be the accumulated transition function of
that path. The constraint to be imposed then is

ti(a)lx = g, (£;(2);, (6)

where / is the component corresponding to component k£ when tak-
ing the transition functions into account, i. e. / = k if the rotational
part of g, is by an angle that is some multiple of T, and [ =1 —k
otherwise.

Note that the translation #,_, ¢ of a transition g/,_,f, can be
expressed in terms of f; | and fy, using Eq. (3) as

ty, g, =t,0)—rp g fr (V) @)

where v is one (arbitrary) of the two vertices of the common edge.

Cycle Constraints. Another way to con-

trol the connectivity structures implied |
by global parametrizations is through iso- fi(g) /
curve cyclicity. Instead of enforcing spe- S\

cific points to be connected by isocurves,

one can enforce isocurves to form cyclic loops rather than spirals
or helices around parts of an object [BLK11]. This can be achieved
using a variation, or special case, of connection constraints, with
a = b and the path p forming a closed loop [CIE* 16, 4.3]:

fi(a)lx = g, (fi(a));- ®

5.2. Constraint System

For a particular parametrization task, with prescribed transition ro-
tations, tagged feature and boundary edges to be aligned to, given
connection and cycle paths, the constraints of the above types form
a constraint equation system Cu = b as follows:

e one constraint (4) per mesh edge (consisting of two equations,
one per component of u),

e one constraint (5) per to-be-aligned feature or boundary edge,

e one constraint (6) per prescribed connection path,

e one constraint (8) per prescribed cycle path.

Note that here actually C € {—1,0,1}"*", except for unusual
connection/cycle constraints whose associated paths cross the same
or adjacent cut edges multiple times. Also note that all these con-
straints are homogeneous, i.e. b = 0. However, our algorithm han-
dles general non-zero righthand sides b, thus more general less
common parametrization constraints, like node spacing constraints
[CK14], could be incorporated as well.

This system is sparse and usually highly underdetermined. We
are interested in one of its solutions u close to &, the values given
by an imperfect input parametrization computed with these con-
straints under consideration using any state-of-the-art parametriza-
tion technique. To this end, we could now directly apply our algo-
rithms presented in Sec. 4. However, the process can significantly
by simplified (thus sped up) by not treating the problem instance as
a generic constraint system, but by exploiting the specific nature of
the constraints relevant in the parametrization context, as detailed
in the following.

5.3. Reduced Constraint System

At each vertex, cut edges partition the cycle of in- u

cident triangles into sectors; at a vertex not inci- \Qg)/
dent to any cut edges, the incident triangles form

a single sector. As noted in [BZKO09], and as is

common practice, the parametrization can be represented by u-
coordinates per sector (called sector variables in the following),
rather than per individual wedge, because wedges within the same
sector are related by identity transitions (across non-cut edges).

We make use of the following additional terminology: An edge
is called an align edge, if it is the edge of an alignment constraint.
A vertex is called a node if one of the following holds:

it is a singular vertex,

it is an endpoint of a connection or cycle constraint,

it has more than two incident cut edges,

it has an incident cut edge and an incident align edge,

it has incident align edges aligning different coord. components.

We are going to derive a formulation such that only the u-
coordinates of node sectors, i.e. typically a small fraction of all
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u-coordinates, need to be considered in the constraint system ma-
trix C. It is based on the concept of branches:

Nodes partition the union of all cut edges and align edges into
branches. Each branch is a sequence of either cut or align edges
forming a connected chain. Note that the rotation r of the transition
g (cf. Eq. (3)) is constant per cut branch (a change in r would imply
a singular vertex, thus a node, which splits branches). Likewise, the
aligned coordinate component is constant per align branch.

Cut Branches. Consider a chain of m cut edges forming a branch
with rotation r. Let the u-coordinates of the sectors along this

branch be denoted u(j)[7 ey u,,ﬂf. Then the tran- ult

sition constraint equations T;, i =0, ...,m — 1, T ulﬁ

following (4) for the edges of this branch are U,
1+

v -
Tioor(u; —wg)—(u; —u ) =0,

Note that the cumulative sum of these equations has a simple form:
a +_ .+
ZTii r(ug —w ) — (ug —u ) =0, )
i=0

Instead of equations T;, i = 0,...,m — 1, we can equivalently use
equations Zf:() T;, k=0,...,m— 1. Ordering variables in the system
such that those corresponding to node sectors come last, this yields
the following structure per branch (exemplarily for m = 5):

u, u$ uy ug

1 -r -1 r
1 —r -1 r

1 —r -1 r

1 —-r -1 r

1 —r -1 r

where each entry is a 2 x 2 block (1 denoting identity, r a rotation
matrix by 0°/90°/180°/270°), because each u has two components.

Align Branches. Analogously, cumulative sums of alignment con-
straints can be built, forming this structure per align branch:

where 1% is a 1 x 2 block, [1,0] for k = 0, [0, 1] for k = 1, where k
is the aligned coordinate component from (5).

Connections and Cycles. Connection and cycle constraints in-
volve node sector variables corresponding to their paths’ endpoints
and additional cut vertex sector variables (due to the translation (7),
which in the notation used here reads t = u; — rui*), which may
be node or non-node sector variables. If non-node variables are in-
volved, we can, as they are on a cut branch, effectively replace them
by node variables by adding cumulative transition constraint equa-
tions (9) to the connection or cycle constraint equation. Concretely,
t=u; — mi+ turns into ¢ = u; — rug by adding —7T;—1, ..., —Tp-
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Global System Globally ordering all variables in the system such
that those corresponding to node sectors come last, the cumula-
tive transition equations per cut branch, the cumulative alignment
equations per align branch, and the modified connection and cycle
equations together form the following constraint system (when the
number of cut and align branches is ¢ and p, respectively):

-1 r -
transition
1 —ryg B
1k
alignment
1%

transition

0 C alignment
i | } conn/eycle

Here we moved all rows involving only node sector variables (i.e.
the last row of each of the above two local system types) to the
bottom. We assumed here that no edge is both, cut and aligned.
While this can easily be ensured in practice, it is not hard to also
generalize to this case (the only difference is that the —r block and
the 1¥ block may share some columns).

As can be seen, the upper left block of the constraint system
matrix has a very particular structure: it is an upper triangular sign
matrix, with entries from {—1,0,1} only. This together with the
lower left all-zero block enables the following efficient algorithm.

5.3.1. Algorithm

Given an input mesh with an imperfect parameterization, given by
per-sector coordinates i, along with the set of constraints that was
used to generate this parametrization and that the parametrization is
supposed to satisfy, we first determine the nodes and the branches.

Let n be the total number of sectors involved in constraints, ns the
number of node sectors, and my,, my, m: the numbers of branches,
align branches, and connection/cycle constraints, respectively.

We build the system matrix in the specific way just described and
extract the submatrix C (lower right block). Note that C has only
2my, + mg + me rows and ng columns. We then proceed as follows:

1. Our method from Sec. 4 is applied to only the small lower right
block C and corresponding input values #; this yields values u
for all node sector variables.

2. Then values for (non-node) variables involved in the —r block
are chosen freely as x; < Fg(%;); this leaves one non-determined
variable per row in the upper part (involved in the 1 or 1 block).

3. Values for these remaining variables are computed directly as
an integer linear combination (2) of the already determined vari-
ables using Algorithm 5, so as to satisfy each row’s equation.

4. Values of sectors not involved in any constraint obviously do not
need to be touched.

Note that for the exactness of step 3 it is essential that the re-
maining variables (in the upper left block of the system matrix)
have unit coefficients, as is the case here by construction — other-
wise we would have to deal with exact divisibility issues.
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This approach, based on applying the method from Sec. 4 to the
reduced system matrix C rather than the entire system, leads to sig-
nificant run time benefits — due to the circumstance that C is com-
monly smaller by several orders of magnitude. Compared to the
direct application of the generic method, this specialized algorithm
leads to run time improvements by factors of 10% or even 10* in
our experiments. For instance, on an average model like focal-octa
(cf. Table. 1), 0.013s rather than 52s are taken by the algorithms.

5.4. Inequality Constraints

Our approach focuses on the satisfaction of linear equality con-
straints. Parametrization problems often involve (non-linear, or lin-
earized [Lip12,BCE*13)) inequality constraints as well, in order to
achieve local injectivity (i.e. absence of fold-overs) — though these
may also be intentionally omitted in some scenarios [ECBK14]. If
these are not satisfied in the input, our method obviously does not
repair the parametrization accordingly. This would require entirely
different techniques — especially considering the non-linear nature
of these injectivity constraints.

If the inequalities are satisfied in the input, there is a small chance
the small adjustments our method makes to the parametrization
lead to a local violation of these inequality constraints, i.e. a fold-
over may get introduced — though this is rare, cf. Sec. 6. As such
a violation is local, it can typically be fixed, as demonstrated in
Sec. 6, by parametrically moving one of the vertices of the inverted
triangle into the kernel of its 1-ring (if non-empty), i.e. the intersec-
tion of the half-planes spanned by the vertex’s link edges. By mak-
ing sure the inequalities are satisfied with a margin in the first place,
one could in principle prevent such inequality violations from hap-
pening entirely, cf. Sec. 7.

6. Results

We applied our method to numerous parametrizations, generated
by state of the art seamless parametrization methods, namely 113
models parametrized using the method of [MPZ14] and 92 using
the method of [BCE* 13]. These two datasets were provided as sup-
plemental material by the authors of [MPZ14].

We processed these using our method, with seamless transition
constraints across all cut edges as well as alignment constraints for
boundary edges. Tables 1 and 2 show statistics of a sample of the
results, as well as aggregate information over the entire datasets.
While the input parametrization is inexact, i.e. constraints are vi-
olated, in every single case, all constraints are exactly satisfied by
the output parametrization computed by our method, represented
in standard floating point numbers, for each case from the datasets.
The exact output files are available from the authors’ websites.

As a consequence of the way parametrizations are generated by
the method of [MPZ14], there often are badly conditioned trian-
gles, whose relative height in parameter space is < 107!, particu-
larly near cuts. At the same time, constraints are typically violated
by > 1070 (cf. Table 1). Hence the adjustment that necessarily
needs to be made for constraint satisfaction has potential to intro-
duce flips. This occurred in 13 of the 113 cases, most often (in 9
cases) just a single flip. The simple local 1-ring-kernel based post-
process described in Sec. 5.4 removed these flips again (even one

flip that was already present in the dataset), except for one single
model (FOCAL-OCTA, the one with the worst parametric distortion
of the entire dataset), where the extremely small triangles surround-
ing two adjacent singularities cannot locally be un-flipped while
preserving exact constraint satisfaction. The [BCE™ 13] dataset has
better conditioned triangles in parameter space (as inequalities are
imposed with an e-margin in that method, cf. Sec. 7). In these cases
not a single flip was introduced in the 92 models (and most of those
already present in the input in that dataset were actually removed).

The tables also contain data about the average and maximum
adjustment Au made to the input parametrization’s coordinates by
our method. These quantities were normalized and are specified
relative to the total extent of the parametrization for comparability.

Table 3 contains information about the range of values in ma-
trix C after processing by Algorithms 1 and 2. While with transi-
tion constraints and alignment constraints we never encountered a
value exceeding 2, connection and cycle constraints prove to cause
some increase. To test this, we added 10, 20, 50 and 100 randomly
generated connection constraints between pairs of parametrization
singularities. Fig. 2 plots the total time taken by our matrix con-
version, demonstrating that also these constraints, in addition to
transition and alignment constraints, can easily be handled.

6.1. Comparison

Exact Arithmetic Solvers. An alternative strategy to yield a re-
sult exactly satisfying all constraints is the use of a solver based
on adaptive precision numbers and exact arithmetic. We performed
experiments using CGAL’s QP solver with rational arithmetic on
the models from Tables 1 and 2. Compared to our method, run time
was more than 4 orders of magnitude longer in each case. Further-
more, the resulting values are rational numbers, with up to several
hundred bits in numerator and denominator, not representable using
standard floating point numbers without introducing error again.

Constraint Elimination. As detailed in Sec. 4 part of our strategy
is related to the master-slave method, also referred to as constraint
or variable elimination [CMPWO1, Ch.13.1]. To illustrate the im-
portance of our specific algorithmic strategy, i.e. our deviation from
this classical procedure, we also tried to perform the implied vari-
able value computation not using our Alg. 3, 4, and 5 but by a
straightforward evaluation of Eq. (2) in floating point arithmetic.
The resulting values violate the constraints by up to 10~ Eq (2)
consists of up to 51 terms in the test cases, giving ample chance to
the accumulation of rounding errors in the involved additions, mul-
tiplications and divisions. Constraints are violated in every single
case, with errors generally larger than 1076 in all cases.

6.2. Demonstration of Benefits

Small violations of constraints may be negligible in some appli-
cations; in other cases they are fatal. A common operation on
seamless parametrizations is the tracing of isocurves, e.g. for the
construction of motorcycle graphs [CBK15, CZ17], quadrilateral
base complexes [RRP15], spline domains [MPKZ10], quad meshes
[EBCK13], or other graph structures. Already when considering
this specific operation of isocurve tracing, one can observe a wide
range of critical issues arising out of non-exactly satisfied con-
straints — regardless of the magnitude of constraint violations.
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time (ms) sparsity (%) (x107%) change (x107%) # flips

model #F #N #B IREF IRREF Eval C ¢ max Cx avg Au maxAu u u final
BRAIN 317K 4,500 4,613 1,212 1,054 548 0.02 0.03 0.021 0.041 0.873 0 10 0
VH_SKIN 195K 1,850 2,007 218 215 97 0.04 0.08 175.0 0.109 2342 1 1 0
DAVID 92K 560 559 15 14 7 0.13 0.25 0.011 0.025 0.438 0O 0 o0
VASE-LION 152K 477 476 11 10 5 0.15 0.30 1.049 0.075  1.727 0O 0 o0
JULIUS 130K 406 317 5 2 2 0.16 0.25 0.034 0.042 0.541 0 0 o0
FOCAL-OCTA 48K 339 338 6 5 2 0.22 0.40 0.090 0.041 0.512 0 16 15
EROS 136K 294 293 5 4 2 0.26 0.48 0.014 0.028 0.374 0O 0 o0
BEETLE 62K 244 206 3 2 1 0.29 0.51 0.663 0.037 0.741 0 0 o0
BLADE 94K 216 215 3 2 1 0.35 0.60 0.085 0.029  0.383 0O 0 o0
AIRCRAFT 11K 134 133 1 1 0 0.56 0.97 0.002 0.026  0.307 0O 0 o0
PULLEY 132K 111 112 1 1 0 0.68 1.31 0.004 0.059  0.690 0o 1 o0
WRENCH 68K 54 55 0 0 0 1.39 239 0.003 0.060  0.178 0O 0 o0
entire dataset (avg): 21 19 9 0.63 1.18 7.779 0.401 11.91

Table 1: Statistics of a sample of models (with #F triangles) parametrized using [MPZ14] and processed by our method. The processing time
mostly depends on the number of nodes (#N) and branches (#B). The maximum input constraint violation max CX, as well as our adjustment
magnitude Au is given, all relative to total extent for comparability. The average of Au was computed only over variables involved in
constraints. The number of flipped triangles in input u, our initial output u, and our final output (after the 1-ring-kernel based fix) is given.

time (ms) sparsity (%) (x1077) change (x1077) # flips

model #F #N #B IREF IRREF Eval C ¢ max Cx avg Au maxAu i wu final
GARGOYLE 100K 383 382 9 17 6 03 05 1.19 0.02 1.87 7 7 0
DAVID 50K 194 193 3 5 2 05 1.1 0.35 0.01 0.34 o 0 O
BEETLE 39K 140 84 1 1 1 09 1.1 0.22 0.01 0.24 o 0 O
ROBOCAT 7K 105 106 1 2 1 09 1.8 342.5 20.6  391.1 97 97 12
SHARK 20K 83 82 1 1 1 12 25 15.4 0.59 17.8 o 0 O
KNOT 100K 66 67 1 1 0 1.5 28 0.77 0.08 1.35 0O 0 O
PULLEY 100K 48 49 0 0 0 20 39 74.5 13.1  123.6 1 1 0
FEMUR 8K 44 47 0 0 0 21 34 1971 157.6 1971 30 30 5
VASE 100K 33 32 0 0 0 3.1 59 1.00 0.12 1.10 0o 0 O
CcuUP 11K 17 20 0 0 0 49 7.0 0.06 0.01  0.048 0O 0 O
entire dataset (avg): 1 2 1 22 42 47.48 2.38  49.31

Table 2: Statistics for our processing of the dataset generated using the seamless parametrization method of [BCE* 13], analogous to Table 1.

Tracing is commonly performed by starting from a particular
seed point on the surface (such as a singularity or a feature point)
and following the parametrization’s u- or v-isocurve (taking transi-
tions into account whenever a cut is crossed) until a specific target
point is reached or some other condition is met. If there is even just
the slightest violation of a constraint (whether concerning transi-
tion seamlessness, alignment, connections, cycles) involved in the
path taken by the trace, the target will be missed, or the stopping
condition may never (or wrongly) be met — or an isocurve simply
falls into the numerical gap of the parametrization at a cut edge. The
key issue in this context is the circumstance that (even minuscule)
geometrical errors translate into structural, combinatorial errors.

To concretely demonstrate the issues due to constraint violations,
we performed tracing operations on the inexact input parametriza-
tions from Sec. 6 — as well as, for comparison, on the exact output
of our method. The following is a list of some of the encountered
issues; one instance of each type is shown in Fig. 3 and 4.
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e When tracing an isocurve into a cut edge where seamlessness is
not exact, the corresponding trace direction on the other side of
the cut may point directly back onto the edge (instead of away, as
would be guaranteed if exact). The tracing gets stuck, oscillating
between two sides, remaining at that point indefinitely (Fig. 3a).

e When tracing onto a regular cut vertex, there may be multiple
or none (instead of a single, as would be guaranteed if exact)
outgoing trace directions (Fig. 3b).

e When tracing along a sequence of aligned boundary edges, the
isocurve may “fall off” the mesh due to inexact transitions when
crossing a cut (Fig. 3c) — or at any point, if alignment is inexact.

e When two surface points are connected by a connection con-
straint, tracing an isocurve starting from one is expected to reach
the other. Even the tiniest constraint violation (on the connection
constraint or some intermediate cut transition), will cause it to be
missed, however. Then, e.g., the two points are not connected in
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max | é,'j |
model \ #connections 0 10 20 50 100
BRAIN 2 6 4 8 24
FILIGREE 2 6 8 6 16
RED CIRCULAR BOX 2 2 8 10 8
THAI STATUE 2 5 4 8 6
GARGOYLE 2 3 6 6 6
LUCY 2 2 4 4 8
CHINESE LION 2 4 4 8 5
DANCING CHILDREN 2 4 4 4 16
POLYGIRL 2 4 4 6 6
BEETLE 2 2 4 4 70
HEPTOROID 2 4 4 8 12
AIRCRAFT 2 4 8 12 8
HELMET 2 5 2 2 3

Table 3: Maximum absolute entry in final matrix C, for different
numbers (0, 10, 20, 50, 100) of connection constraints imposed.

T T T I I T T T
—— () connection constraints P
2 |- | —— 10 connection constraints
—— 100 connection constraints

Time (s)

| | | |
0 1,000 2,000 3,000 4,000

Figure 2: Total time taken by the matrix conversion into IRREF
relative to the number of nodes, over the entire dataset of [MPZ14].
Various numbers of random connection constraints were added;
notice that these have little impact on the run time.

the graph or mesh structure arising from the traces as expected —
contrary to the intention of the connection constraint (Fig. 4 top).

e Analogously, isocurves that are supposed to form closed loops
(due to imposed cycle constraints) will instead form long spirals
or helices (with extremely narrow pitch) (Fig. 4 bottom).

While one may think of ad hoc means to locally resolve some indi-
vidual issues, there is no obvious way of doing this in a principled,
consistent manner. For instance, artificially skipping along an edge
where a trace got stuck implies the merging of distinct traces reach-
ing that edge, likely violating the expected and required proper-
ties (e.g. quadrilateral faces only) of the structures built from these
traces. By employing some kind of e-based snapping technique one
could possibly take care of some near-miss situations but, of course,
such heuristics at the same time inevitably enable the occurrence
of false positives (merging things that are supposed to be separate),
with similarly fatal effects on the resulting graph structures’ proper-
ties. Such kinds of issues do not have to be dealt with when tracing
in a truly seamless parametrization, as provided by our method. In
this ideal setting furthermore symmetry is ensured trivially: tracing
from a to b yields the same result as tracing from b to a. This like-
wise would be hard to ensure by means of such ad hoc remedies,
€-snapping, or other application-specific heuristics.

a)

Figure 3: Left: error cases when tracing in inexact parametriza-
tions. Center: tracing in our exact parametrization. Right: exag-
gerated illustration of the respective situation in uv-space; dashed
arrows indicate where the trace is supposed to but cannot continue.

y > | e
o
K

\

Figure 4: Left: connectivity errors due to tracing in inexact
parametrizations with connection (top) or cycle constraint (bot-
tom). A point (vertex) that is supposed to be reached is missed in-
stead. Such errors arise no matter how small the error (top: around
1071 bottom: around 10~ ). The insets show extreme magnifica-
tions of the critical spots. Right: correct behavior using our resullt.

7. Limitations and Future Work

Our experiments reveal that in the parametrization context, even for
very large problem instances, matrix values remain small (cf. Ta-
ble 3), i.e. integer overflow issues are far from relevant here. More
generally, one could of course employ multi precision integer types
(e.g. mpz [G*15]) to avoid overflow under any circumstances.
Note, however, that if not only intermediate values but also values
of the final matrix C are very large, this may lead to strongly quan-
tized result values x, due to the divisibility requirement described
in Sec. 4.3. In the absolute worst case, for a homogeneous system
the (valid but probably useless) zero solution would be produced.

The only aspect in which the method thus could actually fail
in the sense of producing a result x that does not satisfy Cx = b,
is an overflow of the fixed point range (—8,8) in the dot prod-
uct evaluation and implied variable value computation of Sec. 4.3.
Note that, by our choice of J, this may only occur if the computed
value for an implied variable x; would exceed its input value X; by
more than the absolute largest value among all input variables, i.e.
|lx; — %;||/ max; |%;| > 1. Hence, either does the input have to vio-
late constraints extremely rather than slightly (in this case a more
conservative choice of & could help), or the integer values b have to
have grown beyond being representable by Fg (which cannot occur
for homogeneous systems). In our parametrization experiments, the

(© 2019 The Author(s)
Authors’ draft. The definitive version has been published in Computer Graphics Forum 38(2).



M. Mandad & M. Campen / Exact Constraint Satisfaction for Truly Seamless Parametrization

relative change ||x; — ;|| / max; |%;| never even exceeded 10>, but
for other applications this aspect may be a relevant limitation.

Our approach focuses on equality constraints. An interesting di-
rection is the systematic treatment of inequality constraints. One
could aim to adjust values in such a way that satisfaction of inequal-
ities is preserved or, more generally, consider the harder problem
of ensuring that it is established even if inequalities are (slightly)
violated initially. Alternatively, if one could determine an a priori
bound on the modification performed by the algorithm, one could
require the solver used to generate the input to satisfy the inequali-
ties with some appropriate margin (as done in some cases anyway,
cf. [BCE*13, Eq. 4]) to ensure preservation despite modification.

We demonstrated the use of our approach in the context of con-
strained seamless surface parametrization, but it has the potential
to be useful in other scenarios. A closely related, thus obvious ap-
plication is seamless volume parametrization [NRP11]. While our
basic algorithm could be applied as is, the specialized optimization
we described in Sec. 5.3 is surface specific. Investigation of analo-
gous simplifications for the volume case would thus be worthwhile.
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Addendum

Exact Constraint Satisfaction for Truly Seamless Parametrization

In this addendum to the article “Exact Constraint Satisfaction for
Truly Seamless Parametrization” we

e make additional remarks on the structure and sparsity of the so-
lution space, which indirectly determines how close to the input
X one can expect an exactly constraint satisfying solution x in the
floating point numbers — and whether there exists one at all;

e point out and correct a mistake in Eq. (2) / Algorithm 4 — which is
relevant only to the inhomogeneous case (b # 0), thus not to the
targeted seamless parametrization problem, where all the con-
straints are homogeneous.

A. Homogeneous Constraint Systems

The homogeneous constraint system Cx = 0 has at least one so-
lution, namely the zero solution x = 0. If furthermore C is rank-
deficient, it has infinitely many solutions, even when restricting to
a discrete set like Z — or a scaled version sZ thereof. Note that Fg is
nothing but a bounded subset of sZ for a particular choice of s =2",
r € Z (depending on § and the number of mantissa bits).

Considering, for instance, a single equation ax; — bxy = 0, with
a,b € Z, we have as solution space in the fixed point numbers sZ:

QN sZ* = {k(b/g,a/s) | k € sZ, g = ged(a,b)}.

The worst case in terms of sparsity of this space is @ and b be-
ing large coprime numbers, such that ged(a,b) = 1. In particular,
if in this case furthermore a or b is larger than the largest number
from Fg, the zero solution x = 0 is the only representable solution.
For systems of multiple equations the situation is more compli-
cated; only after transformation of C into Hermite or Smith normal
form [Laz96] do the coefficients become apparent whose greatest
common divisors determine the spacing between neighboring solu-
tions in the discrete space.

Fortunately, homogeneous constraints encountered in geometry
processing applications usually do not have large prime coeffi-
cients. In the targeted seamless parametrization case, almost all co-
efficients are 1, and even when transforming C they do not grow
in any significant manner, cf. Table 3.

Note that ' may contain additional solutions that are not in
Fs C . The proposed algorithm constructs solutions restricted
to F5. Ways to generalize to all of [F are not obvious and the signif-
icance of the potential benefit is unclear.

B. Inhomogeneous Constraint Systems

The bracketing in Eq. (2) is incorrect for the inhomogeneous case,
where b # 0. The correct expression is

Tn(j) = (5/'. ):(')f{m') / Cinty): @)
i=n(j

Note that for b =0, i.e. the homogeneous case — as relevant in the
seamless parametrization context — this does not differ from Eq. (2).

This furthermore increases the difficulty of finding a solution:
instead of being able to choose the free variables such that they
— individually — are divisible by certain values (as possible in the
homogeneous case, cf. Algorithm 4), one needs to choose the free
variables such thflt these entire sums (including b j) are divisible by
the coefficients C ;) of the dependent variables. The choice made
by Algorithm 4 is thus actually insufficient for the inhomogeneous
case; instead, an algorithm for generic linear Diophantine equation
systems can be employed [CD94, KMAOS].

While in the homogeneous case the constraint system always has
a solution in [Fg, in the inhomogeneous case a system may have no
solution at all in F5 or in Z (even if it is feasible over R). A minimal
example is the single equation

3x;=1.

For a multivariate equation Y a;x; = ¢ a solution in Z exists iff
gcd(ay,az,...) | ¢, i.e. iff the greatest common divisor of all co-
efficients divides c. Thus, e.g.

9x1 + 14xy =1
has a solution in Zz, while
9x1 4+ 15x =1

does not. Various algorithms to determine the feasibility of and to
solve such linear Diophantine equations (and equation systems)
have been described, e.g. [Laz96, CD94, KMAOS8]. Furthermore,
some algorithms supporting range bounds, e.g. [AHLOO], can be
used to find a solution within the bounded set [Fg — or to prove non-
existence of such a solution. In general, answering this question is
NP-hard.

In conclusion it can be stated that — unless additional a priori
knowledge about the characteristics of coefficients and right hand
side values is available in a specific application — one cannot ex-
pect inhomogeneous constraint systems to be exactly satisfiable in
the fixed or floating point numbers in general. The use of rational
number types may be the more practical approach in such inhomo-
geneous cases.
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