
Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing

HENDRIK BRÜCKLER and MARCEL CAMPEN, Osnabrück University, Germany

(a) (b) (c) (d) (e)

Fig. 1. (a) Visualization of a so-called seamless parametrization in the volume of an object. (b) Its motorcycle complex, an embedded volumetric cell complex

aligned with this parametrization; some of its elements (marked yellow, orange) are determined in a quantization process to be undesirable. (c) The result of

eliminating all marked elements using our proposed collapsing strategy. (d) An exploded view of an integer-grid map, safely constructed block-by-block based

on this simplified cell complex, and optimized for reduced distortion. (e) A hex mesh extracted from this map, exhibiting a conforming multi-block structure.

We present a set of operators to performmodifications, in particular collapses

and splits, in volumetric cell complexes which are discretely embedded

in a background mesh. Topological integrity and geometric embedding

validity are carefully maintained. We apply these operators strategically to

volumetric block decompositions, so-called T-meshes or base complexes, in

the context of hexahedral mesh generation. This allows circumventing the

expensive and unreliable global volumetric remapping step in the versatile

meshing pipeline based on 3D integer-grid maps. In essence, we reduce this

step to simpler local cube mapping problems, for which reliable solutions

are available. As a consequence, the robustness of the mesh generation

process is increased, especially when targeting coarse or block-structured

hexahedral meshes. We furthermore extend this pipeline to support feature

alignment constraints, and systematically respect these throughout, enabling

the generation of meshes that align to points, curves, and surfaces of special

interest, whether on the boundary or in the interior of the domain.

CCS Concepts: • Computing methodologies Ñ Computer graphics;

Mesh models;Mesh geometry models; Shape modeling.

Additional Key Words and Phrases: block-structured, multi-block, T-mesh,

hexahedral mesh, volume mesh, block decomposition, base complex

ACM Reference Format:

Hendrik Brückler andMarcel Campen. 2023. Collapsing Embedded Cell Com-

plexes for Safer Hexahedral Meshing. ACM Trans. Graph. 42, 6, Article 180

(December 2023), 24 pages. https://doi.org/10.1145/3618384

Authors’ address: Hendrik Brückler, hendrik.brueckler@uos.de; Marcel Campen,

campen@uos.de, Osnabrück University, Germany.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on

Graphics, https://doi.org/10.1145/3618384.

1 INTRODUCTION

Mapping problems between geometric objects are very challenging

when properties like injectivity or bijectivity are required. Reliable

algorithmic solutions with strict guarantees focus on restricted

settings, such as mapping onto flat domains with convex boundary.

To handle more general settings, a strategy that has been followed

in a variety of ways is to decompose the more general problem

into multiple instances of a simpler special case problem. In other

words: build the desired map out of multiple simpler maps. This can

be done either through composition or through union of maps.

Examples include:

‚ Maps from surfaces to non-convex planar domains, composed

out of twomaps via a convex planar domain [Weber and Zorin

2014].

‚ Maps between surfaces of disc topology, composed out of two

maps via a convex planar domain [Kanai et al. 1997; Schmidt

et al. 2019].

‚ Maps to non-convex planar domains, as a union of multiple

maps to convex planar domains [Kraevoy et al. 2003; Myles

et al. 2014; Lyon et al. 2019, 2021b]

‚ Maps between surfaces of arbitrary topology, as a union of

compositions of maps via convex planar domains [Kraevoy

and Sheffer 2004; Schreiner et al. 2004; Schmidt et al. 2020].

These examples concern the case of 2Dmaps.Wewant to follow such

a route in 3D, in the context of hexahedral mesh generation using

volumetric integer-grid maps (IGMs), a state-of-the-art approach to

this important task [Pietroni et al. 2022; Liu and Bommes 2023].

These maps are volumetric, their 3D domains are complex (non-

convex and even self-overlapping), and local injectivity is strictly

required, together making their computation a highly challenging

problem without a reliable solution so far. Our goal herein is to

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0003-4148-2619
HTTPS://ORCID.ORG/0000-0003-2340-3462
https://doi.org/10.1145/3618384
https://orcid.org/0000-0003-4148-2619
https://orcid.org/0000-0003-2340-3462
https://doi.org/10.1145/3618384

180:2 • Hendrik Brückler and Marcel Campen

(a) (b)

(c)

(d)(e)(f)

Fig. 2. Overview of a parametrization-based hex meshing pipeline: Given a tetrahedral mesh, (a) a global seamless parametrization together with a singularity

graph (black) is computed, serving as the guiding structure for (b) a parametrization-aligned block decomposition of the input. In a process called quantization

(c), elements of this partition are assigned integer target dimensions, including zeros (orange). Our method allows eliminating all zero-elements from the

partition, yielding (d) a simplified block layout with strictly positive integer dimensions. This facilitates solving the hard problem of computing (e) a global
integer-grid map respecting these integers by dividing it into simpler per-block cube-map problems. Finally, (f) a hexahedral mesh can be extracted as the

preimage of the parametric integer-grid, and optionally be further optimized. With our proposed method available (addressing step (d) together with (e)), all

steps (b) to (f) can now be considered robustly solved. On the remaining step (a), progress in terms of robustness is ongoing [Liu and Bommes 2023].

decompose this problem—generating an IGM out of a given seamless

parametrization—into simpler convex cube-mapping problems, with

a reliable solution available. For orientation, Fig. 2 provides an end-

to-end overview over an instance of the IGM-based hexahedral

meshing pipeline, and shows where our method comes into play.

1.1 Hexahedral Meshing

A detailed recap of IGM-based hexahedral meshing can be found

in a recent survey covering this topic [Pietroni et al. 2022]. In a

nutshell, a given tetrahedral mesh representation of a 3D object is

mapped (using cuts and possibly overlapping charts) into R3 in such

a way that the inverse image of the Cartesian integer-grid forms a

hexahedral mesh structure in the object.

A key challenge in this approach is dealing with the discrete

degrees of freedom of the problem, ensuring that not partial but

only entire grid cells map into the object. Fig. 2a shows a so-called

seamless parametrization, in which this is not yet the case; the in-

teger isocurves do not match up across cuts and are not properly

aligned with the object’s boundary. A first reliable solution to this

problem has recently been described [Brückler et al. 2022a], effec-

tively generalizing earlier results for the analogous 2D quantization

problem of IGM based quadrilateral mesh generation [Campen et al.

2015]. However, this method only reliably decides about the dis-

crete degrees of freedom and guarantees feasibility of the chosen

integers. Then actually (re)computing the IGM that matches this

decision (as shown in Fig. 2e) and therefore properly implies a hex-

ahedral mesh is another problem—for which, so far, only best-effort

approaches, based on non-convex numerical optimization, are avail-

able. Especially for the interesting use case of generating rather

coarse hexahedral meshes—which for instance can serve as a block

layout for the generation of finer block-structured meshes—failures

can be observed for this step of the process.

In the analogous 2D setting, Lyon et al. [2019] have proposed a

clever reduction, achieving strong guarantees: Instead of attempting

to compute a global IGM subject to challenging constraints, the

problem is decomposed into local disc-topology mapping problems

to simple square domains—which are easily solved [Tutte 1963].

1.2 Embedded Cell Complexes

Methods building a map from a union of maps, however, require

suitable and compatible partitions of both, the map’s source and

target domain. Such partitions are not easy to construct, already in

2D this requires attention to numerous details [Kraevoy and Sheffer

2004; Schreiner et al. 2004; Lyon et al. 2019]. We exploit the so-called

motorcycle complex [Brückler et al. 2022b], cf. Fig. 2b, a structure

that proved useful for the above mentioned problem of quantiza-

tion already [Brückler et al. 2022a], cf. Fig. 2c, and reuse it for our

purpose. To that end we interpret it as an embedded cell complex, a

coarse structure of connected cells (essentially a polyhedral mesh)

embedded into the to-be-meshed object (represented by a dense

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:3

tetrahedral mesh), defining a partition of it into blocks. It is not

directly suitable for our purpose, though, but we will show that it

can be made suitable, by topologically and geometrically modifying

it, as illustrated on a simplistic example in Fig. 3. To this end we

introduce a set of collapse operators (together with auxiliary split

operators) for volumetric embedded cell complexes, which maintain

a consistent embedding. Their strategic application allows us to

modify the complex into a state that provides exactly the partition

needed for our purpose, cf. Fig. 2d. Namely, by then mapping each

block of the partition to a simple axis-aligned cuboid (of an extent

derived from the quantization), cf. Fig. 2e, the union of these maps

forms an IGM that implies exactly the desired hexahedral mesh

connectivity and resolution, as determined by the quantization.

Embedded cell complexes, coarse meshes that are embedded into

fine meshes, are actually made use of in various computer graphics

contexts (cf. Sec. 2). We therefore formulate our operators rather

generically to begin with, abstracting from our specific use case and

thereby opening the door for their potential future use in other sce-

narios as well, and then extend and specialize them to our purpose.

1.3 Contribution

To summarize, we propose to reduce the hard global problem of

recomputing a 3D IGM to match integer constraints (in addition

to boundary alignment constraints and possibly feature alignment

constraints) to simpler local ball-topology mapping problems onto

cuboid domains—for which reliable solutions are available [Hin-

derink and Campen 2023]. To this end we conveniently re-use the

embedded cuboidal cell complex (called motorcycle complex or T-

mesh) that is made use of in the pipeline (to safely make the integer

decisions) anyway. This complex provides a partition and we exploit

Blockwise Mapping

zeros imply

degeneracy

Global Mapping
unreliable

T-Mesh Collapsing
validity-preserving

Blockwise Mapping

reliable

Fig. 3. Illustration of mapping the blocks of an embedded volumetric T-mesh

(left) onto cuboids (right), of integer extent specified by the quantization.

Top: The complex contains a zero-block; mapping this block (which has non-

zero volume in the object) onto an accordingly sized cuboid (of zero volume)

forces the map to be non-injective. Bottom: After performing collapses of

zero-elements, maintaining a bijective embedding of the remaining complex,

the blocks can be mapped without degeneration. Diagonally: The current

state of the art, computing the map not blockwise but globally (as in e.g.

[Brückler et al. 2022a; Liu and Bommes 2023]), is unreliable, cf. Sec. 8.3.

(a) (b) (c) (d)

Fig. 4. Illustration of 2D cell complexes embedded in a surface. a) simplicial,

b) polygonal, c) quadrilateral, conforming, d) quadrilateral, nonconforming.

it to express the mapping problem locally, per block. A key require-

ment to enable this reduction is a toolbox capable of collapsing

elements of this cell complex, while maintaining a valid embedding

in the tetrahedral background mesh.

After providing a formal description of embedded cell complexes

in the volumetric setting (Sec. 3), we therefore introduce a collection

of embedding-aware collapse operators for the entities (arcs, patches,

blocks) of such complexes (Sec. 4). These preserve overall topology,

maintain a valid connectivity, and suitably adjust the geometric

embedding in a consistent manner (Sec. 5). We furthermore describe

an extension to non-conforming complexes with T-junctions (see

Fig. 4 (d) for an illustration in 2D), like the motorcycle complex;

this requires the introduction of embedding-aware split operators

in addition to the different types of collapses (Sec. 6). These are

designed to additionally be capable of maintaining a quantization

associated with the cell complex.

We demonstrate the systematic use of this collection of oper-

ators in the context of IGM based hexahedral mesh generation,

enabling reliable remapping according to any chosen valid quantiza-

tion (Sec. 7). We furthermore extend this versatile mesh generation

pipeline with support for geometric features such as creases on the

boundary or material interfaces in the interior. This in particular

requires adjustments to our embedding-aware operators, so as to

make these feature-aware (App. B).

Method Overview. The input of the hexahedral meshing pipeline

from Fig. 2 is a tetrahedral mesh, possibly with attributes indicating

desired sizing, orientation, and features; its output is a hexahedral

mesh. The steps (d)+(e) we focus on herein take as input a boundary

aligned, possibly non-conforming, cuboidal block decomposition

together with quantization and feature information. Their output is

an IGM, a locally injective feature-aligned integer grid map. Step (d)

consists of algorithmically transforming the input block decomposi-

tion into a state such that the mapping problem can be expressed

blockwise in step (e). Concretely, we interpret the decomposition

as a cell complex embedded in a tetrahedral background mesh, and

incrementally apply collapse operators to get rid of all cells of zero

length, area, or volume, as specified by the input quantization infor-

mation, cf. Fig. 3. The operators are designed to always maintain a

consistent bijective embedding of the cell complex in the background

mesh, while respecting boundaries, singularities, and features.

2 RELATED WORK

Embedded Meshes. Coarse meshes, either triangular, quadrilateral,

or polygonal, embedded in a background triangulation (of a surface

or in the plane), are used in a variety of scenarios. For instance,

quad layouts are coarse quadrilateral meshes, typically embedded

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:4 • Hendrik Brückler and Marcel Campen

into a surface triangle mesh [Campen and Kobbelt 2014; Born et al.

2021]. So-called base complexes defining the parametric domain for

spline surface representations are coarse (triangular or quadrilateral)

meshes embedded in triangle meshes [Eck and Hoppe 1996]. In the

context of texturing and similar mapping problems, polycube parti-

tions are certain quadrilateral meshes embedded in surface triangle

meshes [Tarini et al. 2004; Lin et al. 2008; Livesu et al. 2013], and

mesh triangulations are coarse triangle meshes embedded in finer

triangle meshes [Kraevoy et al. 2003; Praun et al. 2001]. Also polyg-

onal [Tong et al. 2006; Born et al. 2021] and non-conforming meta

meshes (with T-joints) [Nuvoli et al. 2019; Lyon et al. 2019, 2021b;

Pietroni et al. 2021] are made use of. The embedded mesh is some-

times referred to as meta mesh, whereas the mesh it is embedded

into may be called background mesh. For representational simplicity,

the embedding is often chosen such that a meta mesh edge (or arc)

is embedded into a path of background mesh edges, and a meta

mesh face (or patch) into a connected set of background mesh faces.

See Fig. 4 for an illustration. Volumetric meta meshes, embedded in

a background tetrahedral mesh, appear more recently in particular

in the context of mesh generation, in conforming [Takayama 2019;

Livesu et al. 2020] and non-conforming [Brückler et al. 2022b,a]

varieties. So-called base complexes of hexahedral meshes [Gao et al.

2015, 2017; Gunpinar et al. 2023] can be viewed as meta meshes

embedded in a hexahedral background mesh.

Mesh Operators. In many of the above works operators to (of-

ten incrementally) construct such meta meshes together with an

embedding are described, specialized to the concrete use case. Op-

erators to modify such meshes after the fact are rarely discussed.

While modification operators (such as collapses, splits, and flips)

of simplicial (triangular and tetrahedral) meshes (and to a lesser

extent more general polygonal/polyhedral meshes) purely in terms

of connectivity are well-explored [Botsch and Kobbelt 2004; Freitag

and Ollivier-Gooch 1997; Trotts et al. 1998; Daniels et al. 2009; Peng

et al. 2011; Shen et al. 2021; Gao et al. 2015], embedded meta meshes

require an accompanying update of the discrete embedding, so as

to keep it consistent with the connectivity. We are not aware of

detailed and sufficiently general treatments of this aspect in the

literature, in particular not for the non-simplicial and volumetric

case, as required for our problem setting.

Integer-Grid Maps. Semi-structured quadrilateral mesh genera-

tion based on global surface parametrization goes back to works

such as [Bommes et al. 2009; Kälberer et al. 2007; Tong et al. 2006].

The class of parametrizations that induce boundary-conforming

pure quad meshes was termed integer-grid maps [Bommes et al.

2013]. A relaxation of this class are so-called seamless maps [Myles

and Zorin 2012; Campen et al. 2019; Levi 2021; Shen et al. 2022].

They essentially ignore the integer constraints that need to be met

by integer-grid maps, treating discrete degrees of freedom as con-

tinuous. Such maps are often generated as a precursor to guide

the choice of integers for IGMs in a process called quantization

[Campen et al. 2015; Bommes et al. 2013; Kälberer et al. 2007; Lyon

et al. 2019].

All these concepts have been extended from the 2D surface set-

ting to the 3D volume setting, so as to facilitate hexahedral mesh

generation [Nieser et al. 2011; Li et al. 2012; Jiang et al. 2014; Liu

et al. 2018; Brückler et al. 2022b,a; Liu and Bommes 2023; Cherchi

et al. 2016; Lyon et al. 2016].

Embedded cell complexes are employed in this context in particu-

lar when it comes to the sub-problem of quantization [Campen et al.

2015; Lyon et al. 2019; Pietroni et al. 2021; Brückler et al. 2022a].

In one case [Lyon et al. 2019] embedding-maintaining meta mesh

modification operators are used, albeit only in a 2D surface setting.

Volumetric Mapping. The computation of proper (e.g. bijective)

maps between volumetric domains is a challenging problem. For sim-

ple maps (without singularities, cuts, overlaps, etc., as in IGMs) some

recent progress can be observed: A constructive approach offering

guarantees regarding bijectivity of the resulting map [Campen et al.

2016; Hinderink and Campen 2023], a recent progressive approach

[Nigolian et al. 2023], or optimization based techniques that achieve

high success rates [Du et al. 2020; Garanzha et al. 2021].

For more general maps (IGMs and seamless maps) with prescribed

singularities, cuts, chart transitions, and pin constraints, only best-

effort techniques (based on non-convex numerical optimization) are

available [Nieser et al. 2011; Pietroni et al. 2022], with an increas-

ingly high level of fragility the more constraints are imposed. Even

in the significantly simpler analogous 2D setting, while significant

progress in terms of reliable computation can be witnessed [Zhou

et al. 2020; Levi 2022; Shen et al. 2022], no fully satisfactory solu-

tion treating the problem as a whole (without decomposition) in full

generality is in sight so far. This leaves little hope that a reliable solu-

tion for the direct computation of valid 3D IGMs will be found soon.

This is our key motivation to instead reduce this problem, which

appears in the parametrization based hexahedral meshing pipeline,

to (multiple instances of) the above simpler mapping problem.

3 BACKGROUND

We are going to work with 3D objects represented by a tetrahedral

mesh. A tetrahedral mesh M “ 𝐶 Y 𝐹 Y 𝐸 Y 𝑉 is a finite three-

dimensional pure simplicial complex (cf. [Klette 2000]) consisting

of tetrahedra 𝐶 “ t𝑐1, 𝑐2, . . . u, facets 𝐹 “ t𝑓1, 𝑓2, . . . u, edges 𝐸 “

t𝑒1, 𝑒2, . . . u, and vertices 𝑉 “ t𝑣1, 𝑣2, . . . u. Its boundary BM is a

triangle mesh, consisting of entities from 𝐹 , 𝐸, and 𝑉 . The mesh’s

geometric realization is assumed to be piecewise linear, thus fully

defined by vertex coordinates 𝑉 Ñ R3. For notational precision,
we distinguish between an abstract element of M and its concrete

geometric realization: For a vertex 𝑥 P 𝑉 , we let r𝑥s denote the point

in R3 it occupies. Similarly, for an edge 𝑥 P 𝐸, r𝑥s is an open line

segment, for a facet 𝑥 P 𝐹 an open triangle, and for a tetrahedron

𝑥 P 𝐶 an open tetrahedron. The disjoint union

Ť

𝑥 r𝑥s over all

elements ofM then is the compact set rMs P R3 occupied byM.

The tetrahedral mesh M is also referred to as the background mesh

in the following; it will serve as basis to define the embedding of a

cell complex S (the meta mesh).

3.1 Cell Complex

For our purposes, S “ 𝐵 Y 𝑃 Y 𝐴 Y 𝑁 is a finite pure polyhedral

cell complex, consisting of blocks (3-cells) 𝐵 “ t𝑏1, 𝑏2, . . . u, patches

(2-cells) 𝑃 “ t𝑝1, 𝑝2, . . . u, arcs (1-cells) 𝐴 “ t𝑎1, 𝑎2, . . . u, and nodes

(0-cells) 𝑁 “ t𝑛1, 𝑛2, . . . u. The blocks are not simplices, but may be

arbitrary topological polyhedra.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:5

Wedefine dimp𝑠q“𝑘 if 𝑠 is a𝑘-cell. Two cells 𝑠𝑖 , 𝑠 𝑗 with | dimp𝑠𝑖q´

dimp𝑠 𝑗 q| “ 1 can be either incident, denoted as 𝑠𝑖 Ø 𝑠 𝑗 , or non-

incident. We also define a directed incidence relation: 𝑠𝑖 Ñ 𝑠 𝑗 iff

𝑠𝑖 Ø 𝑠 𝑗 ^ dimp𝑠𝑖q ă dimp𝑠 𝑗 q. This gives rise to a graph based

cell connectivity visualization as used in Fig. 6. A link between

any two elements 𝑠0, 𝑠𝑛 P S is a sequence of elements 𝑠0, 𝑠1, . . . , 𝑠𝑛
such that 𝑠𝑖 Ø 𝑠𝑖`1@𝑖 . We call two elements connected if there is a

link between them and a subset S1 Ď S is called connected, if all

elements inS1
are pairwise connectedwithinS1

. A link is a downlink

(uplink) if dimp𝑠𝑖q is monotonically decreasing (increasing). For any

cell 𝑠 its closure x𝑠y is the union of 𝑠 with all cells for which a

downlink from 𝑠 exists. The closure of a set of cells is defined as the

union of the closures of each cell. The boundary of a cell is defined

as B𝑠 “ x𝑠yz𝑠 , i.e. the set of all cells reachable from 𝑠 via a downlink.

Note that we make no restrictive assumptions regarding self-

adjacency; a cell may be linked to itself via one of the cells from its

boundary. For instance, a block may be self-adjacent via a patch, an

arc, or a node.

3.2 Embedded Cell Complex

A discrete cell complex embedding of S into tetrahedral meshM is

a map I : S ãÑ 2
M

, mapping each cell 𝑠 P S onto a set of elements

of M, respecting a number of embedding conditions. Here 2
M

denotes the set of all subsets ofM.

Concretely, it can be viewed as the union of four maps, depending

on the type of cell:

‚ I0 : 𝑁 ãÑ 𝑉

‚ I1 : 𝐴 ãÑ 2
𝐸

‚ I2 : 𝑃 ãÑ 2
𝐹

‚ I3 : 𝐵 ãÑ 2
𝐶

Thismeans each node ismapped to a vertex, each arc to a set of edges,

each patch to a set of facets, and each block to a set of tetrahedra.

While this representation is convenient for implementation pur-

poses, formal properties are more easily expressed using a derived

map I˚
that additionally includes all interior lower-dimensional

elements in a cell’s image: I˚p𝑠q – xIp𝑠qy z xIpB𝑠qy. This also di-

rectly defines a cell’s geometry, via r𝑠s – rI˚p𝑠qs, i.e. the geometric

realization of cell 𝑠 is defined by that of the elements it is embedded

in. This is illustrated in Fig. 5.

The following conditions need to be met by all cells to make the

map I an embedding:

‚ Injectivity: I˚p𝑠𝑖q X I˚p𝑠 𝑗 q “ H for all 𝑠𝑖 ‰ 𝑠 𝑗 P S.
‚ Structure Preservation: rB𝑠s “ Br𝑠s.

‚ Manifoldness: dimp𝑠q “ 𝑘 ą 0 ñ r𝑠s is an open 𝑘-ball.

Intuitively, the embedding is structure preserving if for each cell the

‘image of its boundary’ equals the ‘boundary of its image’. For many

use cases, including ours, the embedding is furthermore assumed to

be surjective, i.e. all ofM is covered by S:
Ť

𝑠PS I˚p𝑠q “ M.

The embedded cell complexes employed in the applications dis-

cussed in Sec. 2 typically meet these conditions by construction.

The modification operators we introduce are designed to maintain a

valid embedding throughout. Whenever the complex is modified on

the abstract incidence level, the embedding is updated consistently,

preserving the satisfaction of all of the above conditions.

Ip𝑠q xIp𝑠qy xIpB𝑠qy I˚p𝑠q

Fig. 5. Illustration of a discrete embedding Ip𝑠q of a quadrilateral patch 𝑠

(left) and its implied geometric realization r𝑠s “ rI˚p𝑠qs (right), topologi-

cally an open disk. In the center two intermediate definitions are illustrated.

Self-Adjacency. It is important to note that while r𝑠s is an (open) 𝑘-

ball, its closure is not necessarily a (closed) 𝑘-ball, namely whenever

cells are self-adjacent in some way. Such configurations are relevant

for some applications, and may also occur in intermediate states

when performing structural modifications (like the collapses in our

use case). We therefore keep definitions this general.

Inverse Embedding. Note that disjointness allows us to define a

kind of inverse: we write
®Ip𝑥q “ 𝑠 if 𝑥 P Ip𝑠q, and ®Ip𝑥q “ 0 if

𝑥 is not part of any cell’s embedding. This is also convenient for

implementation purposes (and is therefore made use of in Sec. 5)

as it, in contrast to I, does not require a set-valued representation

per element. For brevity, we will use the notation I𝑠 – Ip𝑠q and

®I𝑥 – ®Ip𝑥q in the following.

3.3 Cubical Complex

Of particular interest in the context of hexahedral mesh generation

are embedded cell complexes with blocks that are structurally cubes,

consisting of six sides and eight corners. We can further distinguish

conforming and non-conforming cubical

complexes. In the former case, each cube

side is formed by one patch, each cube edge

by one arc. In the latter case, rather, each

cube side may be formed by a connected set

of multiple patches, each cube edge by a sequence of arcs, as illus-

trated here (and in 2D in Fig. 4d). Arcs between patches of the same

cube side are referred to as T-junctions in this context, the complex

as a whole as T-mesh.

Motorcycle Complex. A particular method to generate an embed-

ded cubical complex is bymeans of tracing iso-surfaces in volumetric

seamless parametrizations [Nieser et al. 2011]. Brückler et al. [2022b]

describe such a construction, the so-called motorcycle complex, a

generalization of the motorcycle graph [Eppstein et al. 2008] from

surfaces [Campen et al. 2015; Lyon et al. 2021a] to the volume. The

result is a non-conforming complex, i.e. a T-mesh. In this case the

blocks of the complex are not just structurally cubical, but they are

geometrically cuboids with respect to the underlying parametriza-

tion, in particular axis-aligned cuboids in parameter space.

T-Mesh Quantization. In the context of the hexahedral mesh gen-

erationmethod of Brückler et al. [2022a], a quantization is associated

with such a T-mesh. This is the assignment of an integer value to

each arc, subject to the condition that each of the six sides of each

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:6 • Hendrik Brückler and Marcel Campen

.𝑥1 𝑥𝑛

𝑠

𝑠1 𝑠2

𝑦1 𝑦𝑛 𝑧1 𝑧𝑛.

𝑥1 𝑥𝑛

𝑠2

𝑦1 𝑦𝑛 𝑧1 𝑧𝑛.

Fig. 6. Illustration of a collapse operation (of cell 𝑠) in terms of the incidence

relation graph, showing the state before (left) and after (right).

block are rectangular (and thus the block cuboidal) when interpret-

ing these integer values as the arcs’ lengths. Such a quantization

directly implies a regular𝑚 ˆ 𝑛 ˆ 𝑜 grid of hexahedra per block,

in such a way that they stitch together globally to a conforming

hexahedral mesh—at least structurally; determining a suitable or

just valid geometric embedding of this mesh is another question.

Importantly, a quantization’s integer values are not necessarily

positive. Zero values may be assigned to some arcs. This is impor-

tant to achieve high structural and geometric mesh quality, espe-

cially when aiming for rather coarse or block-structured hexahedral

meshes [Brückler et al. 2022a]. Therefore implied arc lengths, patch

areas, and block volumes can be zero, i.e. they imply and correspond

to zero hexahedral mesh edges, faces, or hexahedra, respectively.

This precludes the approach of simply, per block, mapping the corre-

sponding regular grid of hexahedra into the block to obtain a valid

geometric embedding, cf. Fig. 3. However, by first collapsing all

elements with assigned zero extent, we can arrive at an embedded

T-mesh with a quantization free of zeroes. This then enables the per

block approach of embedding the hexahedral mesh, or analogously

remapping an IGM.

4 COLLAPSE OPERATORS

The main operators we require are collapse operators, for arcs,

patches, and blocks of a volumetric cell complex. Their purpose is

to remove the respective cell from the complex while updating the

surrounding cells to preserve all desired properties. We first consider

the abstract connectivity aspects of such collapses. Afterwards, in

Sec. 5, the accompanying treatment of the complex’s embedding in

a background mesh is addressed.

Concretely, here we describe the following atomic operators:

‚ collapsing a single arc, incident to one or two nodes;

‚ collapsing a single patch, incident to one or two arcs;

‚ collapsing a single block, incident to one or two patches.

While an arc is naturally incident to no more than two nodes (one in

the case of a loop arc), patches and blocks in a generic cell complex

may be incident to arbitrary higher numbers of arcs and patches,

respectively. For these a collapse is, in general, not uniquely defined

in terms of connectivity. We therefore focus on the above simple

types, called pillow-patches and pillow-blocks, first of all. In Sec. 6

we describe collapse operators (as an extension of the base operators

introduced here) also for more general patches and blocks, in a

(a) (b) (c) (d) (e)

Fig. 7. Illustration of several types of collapses. a) collapse of arc with two

nodes. b) collapse of patch with two arcs. c) collapse of arc with one node;

note that the yellow patch becomes isolated and is deleted. d) collapse of

block with two patches. e) collapse of patch with one arc; note that the

contained block becomes isolated and is deleted.

setting where additional information (an associated quantization)

disambiguates the situation.

4.1 Connectivity Updates

We exploit a symmetry among the above three operators to simplify

exposition: In each case, an 𝑖-dimensional cell 𝑠 incident to one or

two p𝑖 ´ 1q-dimensional cells is to be collapsed. Fig. 6 illustrates

this situation (for the case of two incident cells, 𝑠1 and 𝑠2) using

the relevant excerpt from the incidence graph defined by the cell

complex’s incidence relation 𝑠𝑖 Ñ 𝑠 𝑗 (cf. Sec. 3.1).

The collapse of cell 𝑠 P S with dimp𝑠q ą 0 is performed as follows:

If there are two cells, 𝑠1 and 𝑠2, with 𝑠𝑖 Ñ 𝑠 , then 𝑠 can be collapsed

if 𝑥 Ñ 𝑠1 ô 𝑥 Ñ 𝑠2, i.e. 𝑠1 and 𝑠2 have the same boundary. A

collapse is a directed operation, i.e. we can choose whether 𝑠1 or

𝑠2 vanishes. We assume 𝑠1 is supposed to vanish in the following.

If there is only one cell 𝑠1 Ñ 𝑠 , we denote 𝑠1 “ 𝑠2 “ 𝑠1
to unify

exposition.

The following updates of the incidence relation are performed to

execute the collapse of 𝑠:

(1) For each cell 𝑥 , if 𝑠1 Ñ 𝑥 , then set 𝑠2 Ñ 𝑥 .

(2) Remove 𝑠 from S.
(3) If 𝑠1 ‰ 𝑠2, remove 𝑠1 from S.

When removing a cell, all incidence information associated with

it is implicitly deleted. Finally, all cells 𝑥 that became isolated (i.e.

there no longer is any cell 𝑦 such that 𝑥 Ñ 𝑦) are deleted. Fig. 6

depicts this update of the incidence relation graphically. Fig. 7 shows

a geometric illustration of the different cases of collapses.

Let us remark that a collapse of a loop arc that is part of the

boundary of a block but does not bound a patch of that boundary,

while possible in terms of connectivity, would cause that boundary

to become non-manifold. Also non-pure complexes can result, with

an arc not incident to any patch or a patch not incident to any block.

Our application scenario does not require any such collapses; the

complex remains in the realm of manifoldness and pureness.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:7

5 EMBEDDING UPDATES

When collapsing cells of complexes that are embedded, the embed-

ding needs to be updated in addition to the connectivity updates

addressed in Sec. 4. Otherwise, when just restricting the map I
to the remaining cells, it would no longer satisfy the embedding

conditions stated in Sec. 3.2. In particular, structure-preservation

and surjectivity are at stake.

In this section we describe, for each collapse operator, the discrete

embedding updates to be performed in conjunction with the connec-

tivity changes, so as to maintain a valid embedding. Conceptually,

when a cell is removed due to a collapse, the embedding update’s

main goal is to shrink the cell’s image under the embedding map to

zero extent, while adjusting the surrounding cells’ images to take

up this space and reestablish a structure-preserving state. In this

way consistency between connectivity and geometry is recovered.

A potential approach would be to discard the embedding of all

cells (nodes, arcs, patches, and blocks) directly adjacent to the re-

moved cell, and then to recompute suitable embedding images for

these. Constructing in particular the required discrete facet surfaces,

to serve as embedding images for patches, subject to manifoldness,

genus, and homotopy constraints, guaranteeing correctness even

in the presence of self-adjacent cells, is a challenging endeavour in

the three-dimensional setting. We therefore develop a strategy to

instead maintain embedding validity. It is based on transforming

the former embedding using a set of suitable operators.

Note that the set of possible structural configurations around a to-

be-collapsed cell is very diverse. The number of patches incident on

an arc is varying, the number and adjacency pattern of arcs incident

on a node is varying, subsets of incident cells can lie in the boundary,

cells can be self-adjacent in multiple ways, cells are embedded in

varying numbers and configurations of background mesh elements,

and so forth. To deal with this complexity, we break the task down to

very simple local operators. First of all, we proceed incrementally; for

instance, in the context of an arc collapse, we focus on the problem

of moving a node along a single edge rather than along an entire arc

(embedded in a path of edges) at once. Furthermore, we build the

operators recursively, along a cell’s uplinks. Together, this allows us

to restrict ourselves to just three local base operators, which we can

then compile into the higher-level operators needed to accompany

the above topological collapses.

For simplicity, we will not explicitly discern between a cell and

its embedding image in this section, so e.g. a patch 𝑝 and the set of

facets I𝑝 “ t𝑓0, 𝑓1, . . . u it is embedded into are both referred to as

patch in the following.

5.1 Base Operators

NodeShift. This operator simply moves a node 𝑛 across one of

its incident edges. If the traversed edge belongs to some arc 𝑎, then

it is removed from 𝑎, meaning 𝑎 is shortened by one edge on one

of its ends. Note that this base operator alone does not maintain

embedding validity if further arcs are incident. It will rather be used

in Sec. 5.2 to compile higher-level operators in a recursive manner.

ArcShift. This operator shifts a segment of an arc 𝑎 by routing

it around the other side of a single triangle 𝑓 incident to the arc’s

path. Effectively, this operation toggles the edges of triangle 𝑓 into

or out of 𝑎: those that were part of 𝑎 before are

removed from it, while those that were not are

inserted. In case 𝑓 is part of a patch 𝑝 , then it

is removed from 𝑝 . Again, this base operator

alone does not yet maintain embedding valid-

ity in general. Care needs to be taken to avoid

interference with other arcs or patches possi-

bly touching the edges to be inserted into 𝑎; this is done by local

refinement of the background mesh, as detailed in App. A.2.

PatchShift. Analogously, a single

patch 𝑝 can be altered by routing the

patch around the other side of a single

tetrahedron 𝑐 incident to the patch sur-

face. Again, facets previously part of 𝑝

are removed from it, while others are in-

serted into it. Aditionally, because a (non-

boundary) patch always separates two

blocks 𝑏1 and 𝑏2 we can easily update

the blocks’ embedding, by logically mov-

ing the traversed cell 𝑐 from one block into the other. In this case

as well, background mesh refinement (App. A.2) may be needed

to avoid overlaps with arcs or other patches possibly touching the

facets to be inserted into 𝑝 .

5.2 Main Operators

The PatchShift operator applied on a non-boundary patch main-

tains a valid embedding, as it includes compatible updates also of

the embedding of the incident higher-dimensional cells (two blocks).

It can therefore be applied in a standalone manner. ArcShift and

NodeShift, by contrast, cannot. They disconnect an arc from its

incident patches or a node from its incident arcs in terms of their em-

bedding, respectively. Hence, we define an ArcPatchShift, essen-

tially an ArcShift followed by PatchShifts that pull the incident

patches with it, so as to maintain a consistent embedding. Simi-

larly, a NodeArcPatchShift is defined, essentially a NodeShift

followed by ArcPatchShifts for the incident arcs. Note that this

effectively forms a recursion along the uplinks of the node: First

the node is shifted, which triggers shifts for the incident arcs, each

of which triggers shifts for the incident patches (which include a

built-in shift for their incident blocks).

5.2.1 ArcPatchShift. Let us first consider only a single patch 𝑝

incident to the arc 𝑎 to be shifted, as displayed in Fig. 8. Initially 𝑎 is

(a) (b) (c) (d) (e)

Fig. 8. Illustration of sub-steps of (part of) a ArcPatchShift. After an arc

(dark blue) is shifted across a single facet (beige) via an ArcShift, one patch

(blue) incident to the arc is first reconnected to the shifted arc by appending

the traversed triangle into the patch. Then it is lifted off by (one or more,

here one) PatchShifts to resolve overlaps with other patches incident to the

arc. Fig. 9 illustrates howmultiple incident patches are handled sequentially.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:8 • Hendrik Brückler and Marcel Campen

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 9. Cross-section illustration of a ArcPatchShift. The first row corre-

sponds to Fig. 8, except that here two PatchShifts are required to lift off

the first incident patch. The further rows show the handling of the second

and third incident patch. Note that in the end the surrounding wheel of

patches of the shifted arc is properly connected to it again.

lifted across the beige triangle by an ArcShift and as a consequence

is disconnected from 𝑝 . To recover valid connectivity, the traversed

triangle is inserted into 𝑝 . As patch overlaps are to be avoided

for embedding injectivity, this alone is not sufficient: there is only

one traversed triangle but possibly multiple incident patches to be

reconnected. To free up space for subsequent patches, 𝑝 is lifted off

the traversed triangle (and the former arc edge, for that matter) by

means of PatchShift operators.

In the simple case displayed in Fig. 8, no more than a single shift

across one tetrahedron is needed. In the more general case however,

lift-off may require multiple shifts in sequence, traversing a whole

sector of tetrahedra in the process. The cross-section of such a more

general case (also involving multiple incident patches) is shown in

Fig. 9. In this example it also becomes clear that the order in which

patches are processed is relevant. It is necessary to "peel off" the

upper layer of patches before gaining access to the next lower layer.

For instance, the patch pointing down-right in Fig. 9 can only be

shifted after one of the two patches pointing left and right. Also, a

situation in which the background mesh resolution is not sufficient

is evident in Fig. 9o, with Fig. 9p indicating the local background

mesh refinement necessary to allow the last patch to be shifted. This

is discussed in detail in App. A.2. Note that the last patch shift in

Fig. 9p-r may be skipped altogether, as Fig. 9o is already a valid

ending configuration; this is discussed further in App. A.1.

Alg. 1 in App. A describes the procedure in a formal way.

5.2.2 NodeArcPatchShift. Consider the situation in Fig. 10a: A

node, with three incident arcs and three incident patches is to be

shifted by one edge along one of the incident arcs. Firstly, the node

itself is shifted by a NodeShift, which disconnects it from two of

the surrounding arcs. As a consequence, the arcs as well have to be

shifted, one after the other, and proceeding layer by layer. Within

the single layer shown in Fig. 10, one such arc is chosen and arc-

node connectivity recovered by appending the traversed edge into

this arc (Fig. 10c-d). Using a sequence of ArcPatchShifts along

a triangle fan (Fig. 10e) the arc is lifted off the former node vertex

(and thus off the traversed edge as well) and incident patches are

pulled with it. This procedure is repeated for any arcs remaining in

the current layer (Fig. 10g-j). Afterwards, if a patch of the current

layer is still incident to the former node vertex, it is lifted off by a

sequence of PatchShifts (Fig. 10k-n).

While Fig. 10 shows only a single layer, the processing order of

further layers is analogous to the procedure in ArcPatchShift,

repeatedly lifting the uppermost layer (reachable from the collapse

edge) off the former node vertex and thereby making the next layer

accessible for lift-off until none is left.

Alg. 2 in App. A describes the behaviour in a formalized way.

5.3 Embedded Collapse Operators

Using merely the above two operators, NodeArcPatchShift and

ArcPatchShift, we can now define the embedding updates to

accompany the different types of collapses.

Embedded Arc Collapse. Updating the embedding for the collapse

of an arc with two incident nodes now is easy: one end node’s em-

bedding is removed and then a sequence of NodeArcPatchShifts

is executed, for each edge along the arc, starting from its other end.

Fig. 11 shows such a collapse fo an arc composed of three edges.

Embedded Patch Collapse. The collapse of a pillow patch 𝑝 , i.e. a

patch incident to exactly two arcs, is slightly more involved. Sim-

ilar to the arc collapse, first one arc 𝑎1 of the patch is chosen, its

embedding erased, and then the remaining arc 𝑎2 is incrementally

shifted across 𝑝 by a sequence of ArcPatchShifts: any facet of I𝑝
incident to at least one edge I𝑎2 is chosen, 𝑎 is shifted across that

facet and the process is repeated until I𝑝 “ H and I𝑎2 coincides

(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

(k) (l) (m) (n)

Fig. 10. Illustration of sub-steps of (part of) a NodeArcPatchShift. Arc by

arc, ArcPatchShift operators are applied to reconnect these arcs with a

shifted incident node. In the end (last row) a PatchShift is applied to lift

the blue patch off of the former node vertex (white).

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:9

Fig. 11. When topologically collapsing an arc (yellow) the complex’s em-

bedding can be updated through (after deleting one incident node from the

embedding map) a sequence of NodeArcPatchShifts, edge by edge.

with the former I𝑎1 . This process is demonstrated in Fig. 12 for a

case where there is only one patch dragged with the shifting arc

and with shifts applied batch-wise for brevity. It is sensible in this

process to postpone shift operations that would temporarily intro-

duce a cycle into I𝑎 , as special case handling in ArcPatchShift

and unnecessary refinement can be avoided that way at no addi-

tional cost. Such a topology-preserving ordering of shifts is possible

because disk-topology triangle meshes (and thus the patch image)

are extendably shellable [Bruggesser and Mani 1971].

Embedded Block Collapse. While the collapse of a block 𝑏 with one

or two incident patches with common boundary could be carried

out in an incremental way in analogy to the above patch collapse

(using PatchShifts), this effort is not actually necessary. Because

an incident (non-boundary) patch is incident to only one further

block, there is no need for the non-trivial procedure of dragging

multiple successors behind it—as was necessary for the above arc

and patch collapse operators. Instead, we only need to erase an

incident patch 𝑝 from the embedding map, and move all cells from

I𝑏 over to I𝑏1 , where 𝑏1
is the other block that was incident to 𝑝 .

Embedded collapse operators for loop arcs with a single node

and patches with a single arc can be defined using our fundamental

operators as well (e.g. contracting a loop arc onto its node using

ArcPatchShifts across a contained patch or surface). Such special

cases, however, are not relevant for our intended application.

Boundaries. Minor special care that needs to be taken for cells

embedded in the boundary is detailed in App. A.1.

Geometric Degrees of Freedom. While the effect of a collapse on

the complex’s connectivity is uniquely defined (cf. Sec. 4.1), geomet-

rically the embedding update comes with degrees of freedom. The

above described embedded collapse operators are designed to, in a

sense, modify the embedding as little as possible. The embedding of

nodes remains unchanged (unless deleted), the updated embedding

of arcs and patches is effectively formed out of unions of their prior

Fig. 12. The embedding update for a pillow patch collapse is performed

(after deleting one incident arc from the embedding map) by a sequence of

ArcPatchShifts, across all triangles of the patch (yellow).

embedding and the collapsed cell’s embedding—just pulled apart

over one layer of backgroundmesh elements to avoid non-injectivity.

Depending on the use case, it can be desirable to afterwards further

adjust this embedding, optimizing for some objective, cf. Sec. 6.2.2.

6 T-MESH COLLAPSES

The previous sections define the operators necessary to perform col-

lapses in general embedded cell complexes. We now extend this set

of operators by additional collapse operators for patches with more

than two incident arcs and for blocks with more than two incident

patches. While in general this comes with ambiguities regarding

the resulting connectivity, we consider here patches and blocks

in T-meshes, i.e. non-conforming cubical complexes as defined in

Sec. 3.3. Concretely, we define a collapse operator for patches that

have two sides, two logical arcs, that may each consist of multiple

arcs, and a collapse operator for blocks that have two sides, two

logical patches, that may each consists of multiple patches. The divi-

sion into multiple arcs and patches is due to T-junctions, induced

by other arcs or patches that are incident to the interior of a logical

arc (patch) from outside the patch (block).

Challenges of Non-Conformity. These operators are particularly

relevant for our use case (Sec. 7). In that context, arcs have assigned

virtual lengths (from a quantization), which also induce areas of

patches and volumes of blocks. We will see that the main goal

is to collapse all cells that have extent zero in

this sense. In a conforming cubical complex,

this is easily possible with the operators from

the previous section, as illustrated in the inset.

First, zero-arcs can be collapsed. This will turn

zero-patches into pillow-patches, which can then be easily collapsed.

In a T-mesh however, collapsing

zero-arcs can yield a quasi-pillow

patch—a patch with two sides (note

that the right node is a T-junction w.r.t.

the patch), but more than two arcs. The

fact that this patch, however, should be

collapsed (it is a zero-patch) illustrates

the need for the above mentioned generalized collapse operators.

Analogously, a block in a conforming cubical

complex is incident to exactly six patches. For

a block with zero-arcs along one dimension, col-

lapsing the four zero-arcs and the resulting four

pillow-patches always yields a pillow-block, allow-

ing blocks as well to be fully collapsed using the

operators from the previous section.

In a T-mesh, by contrast, the six sides

of a block may in total contain more than

six patches, and collapsing all zero-arcs of a

block does not yield a pillow-block. Even if

all patches of the four collapsed sides were

conforming initially, i.e. composed of exactly

four arcs each, and as such could be handled

by standard pillow-patch collapses after col-

lapsing the arcs, the remaining quasi-pillow block could not be

collapsed using known operators.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:10 • Hendrik Brückler and Marcel Campen

Reduction to Conformity? It is tempting to try to reduce the non-

conforming situation to a conforming one. Then the known opera-

tors could be applied. This, however, is not easily possible in general,

especially when the complex needs to remain consistent with the

assigned quantization, as the following considerations show.

An intuitive idea might be to, if the T-mesh was created such that

it is aligned with a parametrization of the background mesh, simply

split patches and blocks by extending all T-junctions by tracing

isolines and isosurfaces. This generates ad-

ditional parametrization-aligned arcs and

patches, splitting the blocks into a con-

forming state. Alas, splitting patches or

blocks by these may contradict and inval-

idate the existing assigned quantization, cre-

ating patcheswhose opposite side lengths do

not match (and which therefore are not us-

able in the hexahedral mesh generation con-

text). Indeed, splits rather must be aligned

with respect to the quantization.

Trying to split all zero-patches and zero-blocks using a quantiza-

tion-aligned splitting strategy also proves to be difficult. Consider a

0

1

1

1

1

1

1

1

1

block with a single zero-arc. Try-

ing to split all its patches in a

quantization-aligned way is an am-

biguous task—due to the zero-arc

separating two layers of arcs that

are actually at the same “height” in

terms of the quantization. This eas-

ily leads to infinite splitting spirals,

as illustrated in the inset.

6.1 Bisection Operators

For these reasons, we introduce additional operators to split, or

more precisely bisect, patches and blocks. This then allows us to

perform collapses of quasi-pillow patches by means of a suitably

chosen sequence of bisections, arc collapses, and pillow patch col-

lapses; quasi-pillow blocks can be collapsed by means of a sequence

of bisections, pillow-patch collapses, and pillow-block collapses.

Effectively, the collapse of the complex quasi-pillow cells is reduced

to a sequence of simple operations.

6.1.1 Patch Bisection. In the following we will refer to a patch that

only has two opposite sides but is incident to more than two arcs as

a quasi-pillow patch. We handle such patches by bisecting them at a

T-junction, by means of introducing a zero-arc. This zero-arc can

then be collapsed using the known operator right away, yielding

two simpler (quasi-)pillow patches. Recursive application of this

bisection operator eventually yields pillow patches (without any

T-junctions), that can then be collapsed. Fig. 13 illustrates this.

The introduction of the arc that bisects the patch requires some

care. The point that the arc is connected to on the side opposing

the T-junction (white in Fig. 13) needs to be chosen within the

correct arc (or on the correct node), based on the assigned quanti-

zation, maintaining equal values on the opposite sides (Fig. 13c,f).

As discussed above, this arc or node may not be unique if there are

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 13. From an initial configuration (a), a quasi-pillow patch results after

performing zero-arc collapses (b). This allows it to be collapsed by means of

simple patch collapses (h-i), after recursively bisecting it (d,g) by extending

a T-junction (c,f).

zero-arcs on the opposite side. We say a patch bisection operation

is executable if no such zero-arcs cause an ambiguity.

Alg. 3 in App. A formalizes this patch bisection operator.

6.1.2 Block Bisection. A quasi-pillow block is a block that has only

two opposite sides but more than two patches, i.e. sides are par-

titioned by some T-junction arcs (Fig. 14a) due to patches being

incident from the block’s outside. Similar to the patch bisection case,

our goal is to split the block into two by extending a T-junction—

which here, however, is an arc in a block side rather than a node.

Extending it requires the insertion of an additional patch, splitting

the block while containing the T-arc in its boundary.

To this end, we first determine the boundary (a cycle of arcs) of

the patch to be inserted. If the arc is already part of a cycle of arcs

(in a common plane in terms of the quantization) on the block’s

boundary, we are done. Otherwise, it is part of a partial cycle (po-

tentially just the single arc) that ends in a T-node (Fig. 14a). We

extend this T-junction across the subsequent patch on the block

boundary (analogous to the above patch bisection case, respect-

ing the quantization). This is repeated until the arc cycle is closed

(Fig. 14b-c).

Once this cycle of arcs is determined, we can insert a new patch,

bisecting the block, incident to this boundary cycle (Fig. 14d). To

determine a suitable embedding for this patch in a topologically

safe manner, we initialize it with one half of the block boundary,

bounded by the arc cycle, and then pull this patch off of the block

boundary into the block’s interior using the PatchShift operator.

Alg. 4 in App. A details this process. Again, we call a block bisec-

tion executable if it involves no ambiguities due to zero-elements.

6.2 Overall Collapsing Strategy

Processing the zero-cells of a complex that are to be collapsed in

order of increasing dimension (collapse arcs before patches before

blocks) would trivially ensure executability of the required bisection

operations. However, this strict prioritization of lower-dimensional

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:11

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 14. A pillow patch (a) is bisected by extending a T-arc (here on the

bottom side) around the block, patch by patch (b) until it forms a cycle (c).

The a patch is inserted, bounded by this cycle, splitting the block into two

(e). Here quasi-pillow-patch collapses (e-f) and then pillow-patch collapses

(f-g) become possible. Recursive application of block bisection (g-i) in the

end leaves simple pillow-blocks.

cells can lead to special configurations (such as zero-arcs form-

ing a loop, zero-patches whose boundary is a single arc or node);

this would require the definition and implementation of additional

embedding-maintaining collapse operators for these special con-

figurations. While certainly possible, we can instead avoid these

by rather giving priority to collapses of higher-dimensional cells if

they are executable, i.e. whenever there is no ambiguity. Then, e.g.,

a cycle of two zero-arcs will be treated by means of a pillow-patch

collapse (if it bounds a patch) or a block bisection (otherwise), before

one of these zero-arcs would be collapsed leaving a zero-loop-arc.

This is achieved by applying the basic embedding-maintaining

operators introduced in Sec. 5.3 and Sec. 6.1 to all zero-elements in

a specific order:

‚ Repeat until no zero-elements remain,

giving priority to operators as follows:

(1) pillow-block collapse

(2) pillow-patch collapse

(3) executable zero-block bisection

(4) executable zero-patch bisection

(5) zero-arc collapse

Note that if the zero-labels were determined by a valid quantization,

all zero-elements will eventually be collapsed. This is due to the

absence of paths of zero-elements between critical elements such

as boundaries [Brückler et al. 2022a].

6.2.1 Ordering. Within each of the above priority classes, the order

of operations can be chosen arbitrarily. The connectivity of the

ultimately resulting complex is already uniquely determined by

the given quantization. What, however, is affected—by the choice

of order as well as the choice of collapse direction—is its concrete

geometric embedding. For our purpose, this is of limited relevance:

It will affect the distortion of the initial IGM built out of the block-

wise maps, but this is globally optimized afterwards anyway, i.e.

it only serves as initialization. Nevertheless, distorted blocks may

increase the hardness of the mapping and optimization problem.

We therefore evaluated multiple ordering strategies:

(1) random order, random direction

(2) smallest first, least-effort direction

(3) smallest first, coordinated direction

‘Least-effort direction’ means that of the two possible collapse di-

rections of an element, the one that requires the smaller number

of incident elements to be re-embedded is chosen. ‘Coordinated

direction’ means that the direction for arc collapses is not chosen

individually per arc but consistently for sequences of arcs that are

adjacent via patches; this avoids zig-zag behavior when sheets of

multiple adjacent blocks or patches are to be collapsed. According to

our experiments, strategy (2) is beneficial over strategy (1), and strat-

egy (3) leads to geometrically even more favourable embeddings, so

we make use of this in our application scenario.

6.2.2 Geometry. To improve the shape of the blocks after all col-

lapses have been performed, we can optimize each arc’s embedding

for minimal length and each patch’s embedding for minimal area—

in the metric induced by the underlying parametrization based on

which the motorcycle complex was built. This can be performed in a

discrete incremental manner, using the ArcShift and PatchShift

operators to move arcs and patches, driven by these objectives. Al-

ternatively, instead of proceeding incrementally, an arc’s embedding

can be directly replaced by a discrete shortest path and a patch’s

embedding by a discrete minimal surface [Grady 2008]. With the

latter approach, ensuring that the resulting minimal surface is ho-

motopy equivalent to the prior embedding image is a challenge. A

selective fallback to the incremental approach then is convenient.

7 HEXAHEDRAL MESHING

We now turn to the application scenario of parametrization based

hexahedral mesh generation—our original motivation for consider-

ing collapses on embedded cell complexes. As indicated in Sec. 1,

we will make use of the results of the previous sections to reduce

a very hard subproblem of the meshing process—with no reliable

solution in sight—to multiple smaller and simpler problems.

7.1 IGM Based Meshing Pipeline

The generic integer-grid map based pipeline for the generation of

semi-structured quadrilateral or hexahedral meshes, already hinted

at in Sec. 1.1, goes back to [Kälberer et al. 2007; Bommes et al. 2009]

and was later refined, improved, and extended in a variety of works

[Pietroni et al. 2022]. Its main steps (cf. Fig. 2), given an input object

to be meshed, are:

(1) Compute a global seamless map, typically topologically and

geometrically guided by a boundary-aligned frame field.

(2) Quantize the seamless map, i.e. settle the integer degrees of

freedom.

(3) Recompute a global seamless map, subject to constraints re-

flecting the integer choice, making it an IGM.

(4) Extract the quad/hex mesh implied by the IGM.

For the 2D case (quad meshes in the plane or on surfaces), reliable

solutions for every step are available by now. For the 3D case (hex

meshes in the volume), reliable solutions are available for step (2)

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:12 • Hendrik Brückler and Marcel Campen

[Brückler et al. 2022a] and step (4) [Lyon et al. 2016]. Step (1) is a

topic of active research, where continuing progress can be witnessed

[Viertel et al. 2016; Liu et al. 2018; Reberol et al. 2019; Corman and

Crane 2019; Palmer et al. 2020; Pietroni et al. 2022]; main challenges

yet lie in the larger topological gap between frame fields and seam-

less maps in 3D (meshability issue). Progress on this front has very

recently been reported [Liu and Bommes 2023].

Step (3) lacks a reliable solution so far. Therefore, even in very

recent work [Brückler et al. 2022a; Liu and Bommes 2023] a best-

effort technique is employed for step (3)—essentially using a non-

convex constrained numerical optimization formulation. Its success

rate depends on the targeted mesh resolution, where a coarser target

resolution implies a harder problem, cf. Sec. 8.3.

Using the collection of operators for embedded volumetric com-

plexes introduced in the previous chapters, we are able to reduce

step (3) to a problem that is actually simpler (rather than harder) than

step (1). In fact, in step (1) a volumetric chart-based, self-overlapping

but locally injective map, with restricted transition functions across

cuts and a (frame field implied) network of singularity points and

curves, needs to be computed. We, by contrast, reduce step (3) to

standard mapping problems of ball-topology regions onto simple

convex domains (cuboids), without any cuts, transitions, or singu-

larities. This is made possible by exploiting the fact that step (3) is a

re-computation problem. In brief, we exploit the result of step (1)

(or a structure derived from that) to enable this reduction.

7.2 Blockwise Remapping

A 3D object equipped with a volumetric seamless map can be parti-

tioned into a (conforming or non-conforming) cubical complex that

is parametrically aligned with the map, e.g. by means of the motor-

cycle complex [Brückler et al. 2022b]. Under the map, each block

is an axis-aligned cuboid. In the above mentioned reliable solution

for step (2), this complex is generated anyway. It is embedded in a

tetrahedral mesh of the given object. On the basis of this complex,

the task of recomputing the map, subject to the above mentioned

constraints, step (3), can be expressed as a blockwise problem. In

essence, each block (of ball-topology) just needs to be remapped

onto a cuboid again, albeit of different extent than in the original

map. The extent is given by the quantization determined in step (2),

as also discussed briefly in [Brückler et al. 2022b, §7.1].

However, this blockwise perspective of the problem is only fea-

sible if no block of the complex is assigned a target extent of zero

(in one or more dimensions) by the quantization. Mapping a block

onto a cuboid of size zero would necessarily force the map into

degeneration, as illustrated in Fig. 3, i.e. the blockwise perspective

is unsuitable in this case. Using only strictly positive quantizations

restricts the solution space significantly, excludes desirable quanti-

zations, and lowers output mesh quality, as discussed in detail by

Brückler et al. [2022a]. Therefore we wish to support zero values.

Note that the reparametrization problem is still feasible in such a

case, just the blockwise approach is unfit.

Our solution to this issue is to collapse all the zero-elements in

the complex—by applying the operators introduced in the previous

section. In the analogous 2D setting, relevant for quad mesh gen-

eration, such a strategy is followed by Lyon et al. [2019]. We now

address the 3D setting using our collection of novel operators. In

fact, prepared with these operators, all we need to do is apply them

to the embedded cubical complex, in the order described in Sec. 6.2,

collapsing zero-elements until none are left. The quantization is car-

ried over to the reduced complex as described in Sec. 6. This yields

a new embedded cubical complex, with an associated quantization

in which now all extents are strictly positive. Hence, the blockwise

remapping approach is feasible, as in Fig. 3 bottom.

7.3 Singularities & Features

A little additional care is necessary when applying the collapses in

this specific setting: Some elements of the complex may coincide

with singularities by construction. Their embedding is (or can be)

crucial and must not be changed (except within a singularity itself).

The same holds for feature curves or surfaces, marked in the in-

put object, that the generated mesh should align to. Such feature

constraints are not supported by the cubical complex construction

[Brückler et al. 2022b] and the quantization computation [Brückler

et al. 2022a]. We describe an extension of these to add support for

feature points, curves, and surfaces in App. B.

Recall that in the collapse operators introduced there is a direction

degree of freedom: Which of the two incident lower dimensional

cells vanishes and which one remains (cf. Sec. 4.1). When collapsing

a cell where one of the two is marked (as a singularity or a feature),

we just always need to choose this one to remain, keeping its embed-

ding unchanged. This is analogous to collapses at the boundary, as

detailed in App. A.1. Note that, assuming a valid quantization, a (to-

be-collapsed but incollapsible) zero-element between two marked

elements (not within the same singularity or feature) will not occur

due to separation conditions [Brückler et al. 2022a].

For collapses of arcs or patches that are marked (as a singularity

or a feature) themselves, the same rules described for collapses of

boundary arcs and patches in App. A.1 need to be applied. This

ensures that the embedding of such arcs and patches is not lifted

off of the intended singularity or feature.

7.4 Mapping and Meshing

After collapsing all zero-elements of the complex (and optimizing

the embedding as discussed in Sec. 6.2.2), we are left with a complex

such that for each block 𝑏 P 𝐵 the associated quantization defines a

positive extent𝑚𝑏 ˆ 𝑛𝑏 ˆ 𝑜𝑏 P Z3.
This leads to a mapping problem per block, computing a map

𝜙𝑏 : rxI𝑏ys Ñ 𝐷𝑏 , i.e. from the geometric extent of the image of 𝑏

(the region of M that 𝑏 is embedded into) to an axis-aligned origin-

rooted cuboid 𝐷𝑏 “ r0,𝑚𝑏s ˆ r0, 𝑛𝑏s ˆ r0, 𝑜𝑏s of the specified size.

The boundary map B𝜙𝑏 : BrxI𝑏ys Ñ B𝐷𝑏 needs to be prescribed

to ensure compatibility with adjacent blocks. Concretely, note that

the block’s boundary is partitioned into patches. Each patch 𝑝 has a

target extent𝑚𝑝 ˆ 𝑛𝑝 assigned by the quantization. The boundary

map B𝜙𝑏 is chosen such that each such patch maps onto an axis-

aligned rectangle of size𝑚𝑝 ˆ 𝑛𝑝 in B𝐷𝑏 . The interior of a patch

can be mapped into this rectangle arbitrarily; this just needs to

be done the same way for both blocks that are incident on the

patch. The union of these maps 𝜙𝑏 defines an IGM forM, namely

𝜙 “
Ť

𝑏P𝐵 𝜙𝑏 . Note that the patches shared by adjacent blocks, due

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:13

Table 1. For inputs from the first dataset, absolute numbers and percentages of zero-elements (blocks, patches, arcs) in the coarsest quantization are shown

in grey, followed by the overall percentage of zero-elements. Furthermore the number of collapses (block, patch, and arc) and bisections (block and patch)

performed to remove all zero-elements are shown, followed by the grand total of operations and the overall reduction of the number of cells. Models for which

the coarsest quantization is strictly non-zero are omitted.

Model |𝐵0| |𝑃0| |𝐴0|
|𝑺
0

|

|𝑺|
Ù𝐵 Ù𝑃 Ù𝐴 |𝐵 |𝑃

ř
ř
ř

𝚫|𝑺|

armadillo 23 8% 120 10% 122 8% 8% 35 144 130 12 23 344 16%

camille hand 14 20% 50 18% 40 11% 15% 24 68 48 10 16 166 25%

joint 11 32% 46 28% 44 18% 23% 12 51 46 1 5 115 35%

sculpture 13 48% 52 41% 52 28% 34% 13 50 48 0 0 111 52%

rockerarm 5 4% 38 6% 48 6% 6% 9 44 49 4 2 108 10%

fandisk 5 18% 25 19% 27 13% 15% 8 31 29 2 6 76 29%

cylinder 4 44% 16 38% 16 25% 31% 4 16 16 0 0 36 49%

bone 1 2% 8 4% 8 3% 4% 3 10 8 2 0 23 7%

kitten 2 4% 7 3% 6 2% 3% 2 7 6 0 0 15 4%

broken bullet 0 0% 2 3% 4 4% 3% 0 2 4 0 0 6 5%

to being mapped compatibly by prescribing the boundary map per

block, ensure that the transition functions of 𝜙 between adjacent

blocks are integer-grid automorphisms [Bommes et al. 2013], as

required for an IGM.

Such a mapping problem, from a ball-topology region to a convex

region, without cuts, transitions, singularities, overlaps, and with

fixed boundary, is more standard and arguably simpler than a global

volumetric IGM mapping problem with free boundary and con-

strained transitions, interior pin constraints, etc. The recent method

of Hinderink and Campen [2023] provides a reliable solution, sup-

porting boundary constraints and guaranteeing bijectivity. Several

other recent optimization-based methods [Du et al. 2020; Garanzha

et al. 2021], while not guaranteeing bijectivity, show high success

rates. We combine their strengths for our evaluation purposes, first

using an optimization-based method for its efficiency and escalating

to the guaranteed method if necessary. In this way we close the

robustness gap due to step (3) in the hexahedral mesh generation

pipeline.

The constructed global map can finally be optimized for reduced

distortion, while maintaining local injectivity and the quantization.

We employ a symmetric Dirichlet objective with flip preventing line

search [Rabinovich et al. 2017] and linear constraints that preserve

seamlessness and keep the integer values at singularities, features,

and boundaries fixed (cf. Fig. 20). Due to this optimization, across

block boundaries, the concrete geometric embedding of the col-

lapsed complex (used merely for initialization) is of low relevance.

8 RESULTS

We have implemented the operators, embedding updates, and the

collapsing strategy described in Secs. 4 to 6 as well as the blockwise

remapping strategy described in Sec. 7 in C++, using the OpenVol-

umeMesh data structure [Kremer et al. 2013]. Code is available at

github.com/HendrikBrueckler/C4HexMeshing.

8.1 Datasets

As input data for the purpose of testing and evaluation we use

the following three sets of instances: The two result datasets of

[Brückler et al. 2022a], containing motorcycle complexes on models

from two different sources. Furthermore, as these do not contain any

feature information, we create a third set of instances by computing

motorcycle complexes (taking features into account, cf. App. B) on

models from the HexMe dataset [Beaufort et al. 2022], which comes

with prescribed feature points, curves, and surfaces. These datasets

then contain 15, 82, and 110 instances, respectively, in total: 207.

On these, quantizations of varying resolution are computed using

the code published by Brückler et al. [2022a]. In particular, to maxi-

mally challenge our method, for the stress test in Sec. 8.2 for each

instance we compute a maximally coarse quantization. This effec-

tively maximizes the number of zero-elements, and—consequently—

the collapsing and embedding update effort for our method. As it

also implies the largest deviation between an initial seamless map

and the to be computed IGM, it also serves as an ideal basis for

gauging the performance of our blockwise remapping approach

compared to previous global remapping methods. For more detailed

comparisons in Sec. 8.3 we furthermore generate sequences of in-

creasingly fine quantizations. Finally, for the purpose of generating

block-structured hexahedral meshes in Sec. 8.5, we generate a mod-

erately coarse quantization to determine a block layout.

8.2 Stress Test

In 168 (81%) of the test instances, the stress test quantization contains

zero-elements. As nothing is to be done on the rest, we restrict

ourselves to these in the following. To give an idea, in these instances

25% of blocks are zero-blocks, 23% of patches are zero-patches, and

15% of arcs are zero-arcs.

Our operators, applied using the strategy described in Sec. 6.2,

successfully collapse all zero-arcs, zero-patches, and zero-blocks in

all of these instances. The total number of operations applied over

all instances is 55,687. Concretely:

‚ 19,167 arc collapses,

‚ 22,912 pillow-patch collapses,

‚ 6,539 pillow-block collapses,

‚ 4,866 patch bisections,

‚ 2,203 block bisections.

The pillow-block collapses include 23 collapses of blocks with

only one incident patch. On average, the total number of cells in

the complex reduces by 29% in the process. For details regarding

these numbers, on a per instance basis, refer to Tables 1, 2 and 3.

Validity of the result was algorithmically verified in each case,

checking surjectivity, injectivity, and manifoldness of the embed-

ding. Validity of the quantization on the resulting reduced complexes

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:14 • Hendrik Brückler and Marcel Campen

Fig. 15. Several models with embedded T-mesh complex, before and after performing our collapsing routine. Collapsing was performed in accordance to the

maximally coarse quantization, eliminating all zero-arcs (orange), zero-patches (purple, if isolated), and zero-blocks (yellow) in the process. The embeddings of

arcs and patches affected in the process were geometrically relaxed in the end (Sec. 6.2.2). Video animations of the process are available in the supplement.

was verified in all cases as well, all patches are of rectangular type

and all blocks of cuboidal type, in terms of connectivity as well as

geometrically under the quantization. No elements of length, area,

or volume zero (under the quantization) remain in any case.

Fig. 15 shows several of these instances, before and after the

collapsing procedure. Let us point out again that we do not mean to

advocate the use of these maximally coarse quantizations, that we

use for stress testing, for practical purposes in general. As can be

seen in the example in Fig. 21, such a maximally coarse result can be

very distorted (mainly because the fixed predetermined singularities

are not well-placed for a structure this coarse). Regardless, our

method handles it properly.

Runtime. The average processing time of our implementation

on these datasets—for the maximally coarse quantization, which

implies the highest amount of collapsing effort—is 308s, with a

median of 109s. Of all instances, 88% finish in under 10min.While not

quick, note that this is of the same order as T-mesh construction and

quantization computation. An outlier among the 168 instances takes

95 min. This is due to the background meshes taken as input having

sizes up to 2.7 million tetrahedra, with cell complexes up to 8787

cells. There certainly is room for improvement. For instance, large

parts of the runtime (around 80%) are spent on adjusting (refining,

de-refining) the background mesh in our research implementation

based on a data structure not well suited for this dynamic adaptation.

To reduce the hardness of the blockwise mapping (discussed be-

low), we add a geometric embedding optimization and background

mesh remeshing (see App. A.3) to this pure collapsing method. With

our current simplistic implementation of this, runtime including

this remeshing is increased to 19.8 min on average, with a median

of 3.7 min. This optional ingredient allows computing the block-

wise maps almost entirely with relatively simple optimization based

methods (as discussed below). Without it, escalation to a more com-

plex guaranteeingmappingmethod, by contrast, would be necessary

in around 20 times as many cases in our stress test scenario.

Mapping. We computed blockwise maps for all 10,433 blocks of

the collapsed complexes using the mapping method from [Du et al.

2020], followed by the method from [Garanzha et al. 2021] if it

does not succeed. The block boundary maps were computed per

patch as 2D Tutte embeddings. The interior map was initialized as

a 3D Tutte embedding. For 99.96% of all blocks, the resulting map

𝜙𝑏 was fully bijective. The remaining 0.04% (4 blocks total from

two different input models) have a few remaining inversions each

with this strategy. Applying the reliable method of [Hinderink and

Campen 2023], also for these a bijective map is obtained.

8.3 Comparison

Approaches for IGM recomputation (for a given quantization) using

global non-convex optimization have recently been mentioned and

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:15

Fig. 16. Two examples of input instances (armadillo and camille_hand) demonstrating the unconditional robustness of our method (bottom row) in

comparison to QGP3D-opt (top row). The coarsest versions are shown with non-linear curved elements for visual clarity. QGP3D-opt fails in obtaining a valid

IGM in all but the rightmost case for both models. We can still attempt to extract a hexahedral mesh, but even a fault-tolerant extractor [Lyon et al. 2016] only

yields a partial mesh (shown in the insets) with holes and other defects.

1 500 1k 2k 5k 10k 20k 50k 100k 500k

50%

60%

70%

80%

90%

100%

target #hexes

s
u
c
c
e
s
s
r
a
t
e

Ours

LMFF-opt

Fig. 17. To highlight the significance of robustness in IGM reparametriza-

tion, the failure rates of a state-of-the-art global reparametrization scheme

LMFF-opt applied to the 110 inputs from the third dataset are evaluated

as a function of target complexity. Note that ‘target #hexes’ is what the

quantization aims for; what ultimately results is of course limited by the

prescribed singularity structure.

used by Brückler et al. [2022a, Sec. 7.2] (based on [Jiang et al. 2014])

and by [Liu and Bommes 2023, Sec. 6.2], using somewhat different

combinations of objectives, constraints, and solvers. We will call

these QGP3D-opt and LMFF-opt, respectively, in the following—

referring to just this optimization part, not the methods as a whole

(focusing on quantization and frame field generation).

QGP3D-opt. Brückler et al. [2022a] mention that they can reliably

compute quantizations of arbitrary target resolution, but the subse-

quent computation of a corresponding IGM is non-robust especially

for coarse settings. Our method resolves this issue. As an example,

for the first two models from Table 1, as shown in Fig. 16, using our

method we are able to compute valid IGMs for maximally coarse

quantizations (as reported in Sec. 8.2), whereas QGP3D-opt suc-

ceeds in achieving a valid result only when the target resolution is

increased (using a trial-and-error search approach) so much that the

resulting meshes have 22x and 10x as many hexahedra, respectively.

Fig. 18. Example (i06u m6) from the third dataset for which a previous

approach, LMFF-opt, yields a map (left) that inverts many tetrahedra (high-

lighted in orange) for a maximally coarse quantization setting. Our method

obtains a valid IGM (right). Shown are the parametric integer-grid isocurves,

colored according to local U- (red), V- (green) or W-alignment (blue).

LMFF-opt. Liu and Bommes [2023] report that LMFF-opt (nearly)

always succeeds in their experiments when targeting dense resolu-

tions of 100,000 hexahedra, but that for “extremely coarse quantiza-

tions ... failures can be observed”. We confirm this using the authors’

released implementation: Fig. 17 shows how the success rate of

LMFF-opt decreases with a decreasing target mesh resolution. For

a maximally coarse quantization, it fails in obtaining a valid IGM

in 44% of the cases. Fig. 18 shows an example. For somewhat finer

target resolution, the success rate quickly rises above 90%, but a

small gap remains even when increasing to a very high resolution

of 500,000 hexahedra. This gap is reliably closed by our method.

Note that the resulting hex mesh connectivity is identical, regard-

less of method (if successful), as we are not comparing different

singularity structure determination methods or different quanti-

zation methods here; the target IGM is the same in all cases. Our

method should therefore not be misunderstood as aiming for a dif-

ferent mesh of potentially higher quality. Instead, the key benefit is

the unconditional robustness our method ensures, whereas previous

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:16 • Hendrik Brückler and Marcel Campen

methods fail unpredictably if the target resolution parameter is not

set high enough.

Of course, even with identical mesh connectivity, there may be

quality differences in terms of distortion, but this is mainly a ques-

tion of the applied final map or mesh optimization. Table 4 reports

scaled Jacobian values, assuming simple linear hexes, in comparison

to LMFF-opt; a few differences can be observed (as can be expected

due to different map optimization paths, starting points, etc), but

no systematic advantage to either side.

8.4 Feature Alignment

The third dataset, based on instances from the HexMe dataset, comes

with feature annotations. Some vertices, edges, or faces in the un-

derlying tetrahedral mesh are marked as (part of) a feature point,

curve, or surface. In Table 3 the number of marked mesh elements

per instance is reported.

Because we have extended the various stages of the motorcycle

complex generation and quantization computation to respect these

features, and designed our collapse strategy to likewise take them

into account, the generated map 𝜙 , and thus an implied hexahedral

mesh, is aligned to these features. In particular, chains of hex edges

follow the feature curves, sheets of hex faces cover the feature

surfaces. Fig. 19 demonstrates this on an example from the dataset.

8.5 Block Structuring

Coarse IGMs are not only of academic interest (e.g. for stress tests as

in Sec. 8.2).Whilemaximal coarseness can imply excessive distortion

(Fig. 21), moderately coarse IGMs can be used to determine and

define block layouts for block-structured (ormulti-block) hexmeshes,

which are of practical interest [Armstrong et al. 2015; Kopriva 2009].

This is similar to how quad layouts are used for the generation of

patch-structured quad meshes [Lyon et al. 2021a; Campen 2017].

To demonstrate this, we take a moderately coarse quantization

and perform our collapsing routine accordingly on the motorcycle

complex. The result essentially determines the block layout. A finer

(strictly positive) quantization, with a scale chosen based on the de-

sired hex mesh resolution, is then computed on this reduced complex.

The implied IGM can then be constructed in a blockwise manner

and optimized (as illustrated in Fig. 20). Finally, a hex mesh can be

Fig. 19. Some input instances (like i15b s8, left) contain marked feature

points, curves (dark blue), or surfaces (light blue) in the volume, that the

result is supposed to respect. Our modified motorcycle complex construction

routine properly aligns the T-mesh complex to these. Preserving feature

nodes, arcs, and patches during collapsing (center) guarantees that the

resulting hexahedral mesh is aligned with these features (right). Some

elements have been peeled away in this visualization to reveal the interior,

and hex mesh faces that are aligned with a feature surface are colored blue.

Fig. 20. While collapsing may result in some blocks being geometrically

distorted or jagged (left), causing an initially distorted IGM after blockwise

construction (center), a subsequent global map optimization starting from

this valid initialization reduces map distortion (right)

extracted. Fig. 22 shows example results of this process; it visualizes

the meshes’ base complex, the coarsest conforming block structure

that the meshes exhibit.

Note that even coarser block layouts can be imagined for some of

these models. This would be a matter of using a different singularity

structure, though, which is a fixed input in our current scenario.

9 CONCLUSION AND FUTURE WORK

We have introduced a set of operators to perform collapses in volu-

metric cell complexes that are discretely embedded in a background

mesh. Conforming complexes as well as non-conforming cuboidal

complex are supported. Applying these to T-mesh complexes used

in the context of hexahedral mesh generation allowed us to reduce

a very hard step (constrained seamless map computation) to a set

of simpler problems (convex simple map computations). For these

there are reliable solutions available due to recent advances.

Looking at the broader scope, the entire hexhahedral mesh gen-

eration pipeline outlined in Sec. 7.1, we note that step (1) (the com-

putation of a global seamless map, possibly guided by a globally

meshable frame field) demands further attention. Existing methods

for this step do not yet offer full success guarantees, though recent

progress can be observed [Liu and Bommes 2023]. This therefore is,

and should be, a topic of ongoing research.

The ability to optimize singularity positions, similar to recent

work on the 2D surface setting [Lyon et al. 2021b], would be of

interest for improved quality (cf. Fig. 21) especially for coarse layouts,

e.g. for improved block-structured mesh generation capabilities.

Fig. 21. Example of a block structure (left: input, middle: collapsed) result-

ing from a maximally coarse quantization, with low geometric quality—in

particular due to fixed singularity positions (right).

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:17

Fig. 22. Pairs of hexahedral meshes (of comparable resolution) with hexahedra colored according to blocks of the mesh’s base complex. Some are sliced to

reveal the interior. The right mesh of each pair (with a significantly simpler block structure) is the result obtained when imposing a coarse block layout as

described in Sec. 8.5. For comparison, the left mesh of each pair is the result obtained when directly targeting the final mesh resolution, without the use of our

collapsing capabilities to impose a block structure or eliminate zero-elements. Models are number 1-5, 9 and 12 from the second dataset as listed in Table 2.

With regard to our embedding-maintaining volumetric cell com-

plex operators, the amount of mesh refinement to enable the em-

bedding updates can be quite high in unfavourable configurations.

It will be interesting to explore ways to determine the updated em-

bedding images of the individual cells not with a focus on minimal

geometric change, but with a focus on minimal required refinement.

Finally, we hope and expect that the introduced operators can be

of value for further use cases and application scenarios, especially as

volumetric geometry processing can be witnessed to be of increasing

interest and relevance.

ACKNOWLEDGMENTS

The authors wish to thank David Bommes for inspiring discussions.

This work was funded by the Deutsche Forschungsgemeinschaft

(DFG) - 427469366; 456666331.

REFERENCES

Cecil G Armstrong, Harold J Fogg, Christopher M Tierney, and Trevor T Robinson. 2015.

Common themes in multi-block structured quad/hex mesh generation. Procedia

Engineering 124 (2015), 70–82.

P-A Beaufort, Maxence Reberol, Denis Kalmykov, Heng Liu, Franck Ledoux, and David

Bommes. 2022. Hex Me If You Can. 41, 5 (2022), 125–134.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.

2013. Integer-Grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4 (2013),

98:1–98:12.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer quadrangulation.

ACM Trans. Graph. 28, 3 (2009), 77:1–77:10.

Janis Born, Patrick Schmidt, and Leif Kobbelt. 2021. Layout embedding via combinatorial

optimization. In Comp. Graph. Forum, Vol. 40. 277–290.

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach tomultiresolutionmodeling.

In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry

processing. 185–192.

Michael L. Brewer, Lori A. Diachin, Patrick M. Knupp, Thomas Leurent, and Darryl J.

Melander. 2003. The Mesquite Mesh Quality Improvement Toolkit. In International

Meshing Roundtable Conference.

Heinz Bruggesser and Peter Mani. 1971. Shellable decompositions of cells and spheres.

Math. Scand. 29, 2 (1971), 197–205.

Hendrik Brückler, David Bommes, and Marcel Campen. 2022a. Volume Parametrization

Quantization for Hexahedral Meshing. ACM Trans. Graph. 41, 4 (2022).

Hendrik Brückler, Ojaswi Gupta, Manish Mandad, and Marcel Campen. 2022b. The 3D

Motorcycle Complex for Structured Volume Decomposition. Comp. Graph. Forum

41, 2 (2022).

Marcel Campen. 2017. Partitioning surfaces into quadrilateral patches: A survey. Comp.

Graph. Forum 36, 8 (2017), 567–588.

Marcel Campen, David Bommes, and Leif Kobbelt. 2015. Quantized global parametriza-

tion. ACM Trans. Graph. 34, 6 (2015).

Marcel Campen and Leif Kobbelt. 2014. Quad layout embedding via aligned parameter-

ization. Comp. Graph. Forum 33, 8 (2014), 69–81.

Marcel Campen, Hanxiao Shen, Jiaran Zhou, and Denis Zorin. 2019. Seamless Para-

metrization with Arbitrary Cones for Arbitrary Genus. ACM Trans. Graph. 39, 1

(2019).

Marcel Campen, Cláudio T Silva, and Denis Zorin. 2016. Bijective maps from simplicial

foliations. ACM Trans. Graph. 35, 4 (2016).

Gianmarco Cherchi, Marco Livesu, and Riccardo Scateni. 2016. Polycube simplification

for coarse layouts of surfaces and volumes. Comp. Graph. Forum 35, 5 (2016), 11–20.

Etienne Corman and Keenan Crane. 2019. Symmetric Moving Frames. ACM Trans.

Graph. 38, 4 (2019).

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:18 • Hendrik Brückler and Marcel Campen

Joel Daniels, Claudio T Silva, and Elaine Cohen. 2009. Localized quadrilateral coarsening.

28, 5 (2009), 1437–1444.

Xingyi Du, Noam Aigerman, Qingnan Zhou, Shahar Z. Kovalsky, Yajie Yan, Danny M.

Kaufman, and Tao Ju. 2020. Lifting Simplices to Find Injectivity. ACM Trans. Graph.

39, 4 (2020).

Matthias Eck and Hugues Hoppe. 1996. Automatic reconstruction of B-spline surfaces of

arbitrary topological type. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques. 325–334.

David Eppstein, Michael T Goodrich, Ethan Kim, and Rasmus Tamstorf. 2008. Motor-

cycle graphs: canonical quad mesh partitioning. Comp. Graph. Forum 27, 5 (2008),

1477–1486.

Lori A Freitag and Carl Ollivier-Gooch. 1997. Tetrahedral mesh improvement using

swapping and smoothing. Internat. J. Numer. Methods Engrg. 40, 21 (1997), 3979–

4002.

Xifeng Gao, Zhigang Deng, and Guoning Chen. 2015. Hexahedral mesh re-

parameterization from aligned base-complex. ACM Trans. Graph. 34, 4 (2015).

Xifeng Gao, Daniele Panozzo, Wenping Wang, Zhigang Deng, and Guoning Chen.

2017. Robust Structure Simplification for Hex Re-Meshing. ACM Trans. Graph. 36, 6

(2017).

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas

Ray, and Dmitry Sokolov. 2021. Foldover-Free Maps in 50 Lines of Code. ACM Trans.

Graph. 40, 4 (2021).

Leo Grady. 2008. Minimal surfaces extend shortest path segmentation methods to 3D.

IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 2 (2008), 321–334.

Erkan Gunpinar, Marco Livesu, and Marco Attene. 2023. Exploration of 3D motorcycle

complexes from hexahedral meshes. Computers & Graphics (2023).

Steffen Hinderink and Marcel Campen. 2023. Galaxy Maps: Localized Foliations for

Bijective Volumetric Mapping. ACM Trans. Graph. 42, 4 (2023).

Tengfei Jiang, Jin Huang, Yuanzhen Wang, Yiying Tong, and Hujun Bao. 2014. Frame

field singularity correction for automatic hexahedralization. IEEE Transactions on

Visualization and Computer Graphics 20, 8 (2014), 1189–1199.

Felix Kälberer, Matthias Nieser, and Konrad Polthier. 2007. QuadCover - Surface

Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3 (2007),

375–384.

T. Kanai, H. Suzuki, and F. Kimura. 1997. 3D geometric metamorphosis based on

harmonic map. In Proceedings The Fifth Pacific Conference on Computer Graphics

and Applications. 97–104.

Reinhard Klette. 2000. Cell complexes through time. In Vision Geometry IX, Longin Jan

Latecki, David M. Mount, and Angela Y. Wu (Eds.), Vol. 4117. International Society

for Optics and Photonics, SPIE, 134 – 145.

David A. Kopriva. 2009. Implementing Spectral Methods for Partial Differential Equations:

Algorithms for Scientists and Engineers. Springer Netherlands, Chapter Spectral

Element Methods, 293–354.

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and compatible

remeshing of 3D models. ACM Trans. Graph. 23, 3 (2004), 861–869.

Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. 2003. Matchmaker: constructing

constrained texture maps. ACM Trans. Graph. 22, 3 (2003), 326–333.

Michael Kremer, David Bommes, and Leif Kobbelt. 2013. OpenVolumeMesh–A versatile

index-based data structure for 3D polytopal complexes. In Proceedings of the 21st

International Meshing Roundtable. 531–548.

Zohar Levi. 2021. Direct Seamless Parametrization. ACM Trans. Graph. 40, 1 (2021).

Zohar Levi. 2022. Seamless Parametrization of Spheres with Controlled Singularities.

Comp. Graph. Forum (2022).

Yufei Li, Yang Liu, Weiwei Xu,WenpingWang, and Baining Guo. 2012. All-HexMeshing

Using Singularity-Restricted Field. ACM Trans. Graph. 31, 6 (2012).

Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie CL Wang. 2008. Automatic

polycube-maps. In Int. Conference on Geometric Modeling and Processing. 3–16.

Heng Liu and David Bommes. 2023. Locally Meshable Frame Fields. ACM Transactions

on Graphics 42, 4 (2023).

Heng Liu, Paul Zhang, Edward Chien, Justin Solomon, and David Bommes. 2018.

Singularity-constrained octahedral fields for hexahedral meshing. ACM Trans.

Graph. 37, 4 (2018).

Marco Livesu, Nico Pietroni, Enrico Puppo, Alla Sheffer, and Paolo Cignoni. 2020.

LoopyCuts: Practical Feature-Preserving Block Decomposition for Strongly Hex-

Dominant Meshing. ACM Trans. Graph. 39, 4 (2020).

Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni. 2013.

Polycut: Monotone graph-cuts for polycube base-complex construction. ACM Trans.

Graph. 32, 6 (2013).

Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: Robust Hexahedral Mesh

Extraction. ACM Transactions on Graphics 35, 4 (2016).

Max Lyon, Marcel Campen, David Bommes, and Leif Kobbelt. 2019. Parametrization

Quantization with Free Boundaries for Trimmed Quad Meshing. ACM Trans. Graph.

38, 4 (2019).

Max Lyon, Marcel Campen, and Leif Kobbelt. 2021a. Quad Layouts via Constrained

T-Mesh Quantization. Comp. Graph. Forum 40, 2 (2021).

Max Lyon, Marcel Campen, and Leif Kobbelt. 2021b. Simpler Quad Layouts using

Relaxed Singularities. Comp. Graph. Forum 40, 5 (2021), 169–179.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust field-aligned global para-

metrization. ACM Trans. Graph. 33, 4 (2014).

Ashish Myles and Denis Zorin. 2012. Global parametrization by incremental flattening.

ACM Trans. Graph. 31, 4 (2012), 109:1–109:11.

M. Nieser, U. Reitebuch, and K. Polthier. 2011. CubeCover – Parameterization of 3D

Volumes. Comp. Graph. Forum 30, 5 (2011), 1397–1406.

Valentin Z. Nigolian, Marcel Campen, and David Bommes. 2023. Expansion Cones: A

Progressive Volumetric Mapping Framework. ACM Trans. Graph. 42, 4 (2023).

Stefano Nuvoli, Alex Hernandez, Claudio Esperança, Riccardo Scateni, Paolo Cignoni,

and Nico Pietroni. 2019. QuadMixer: layout preserving blending of quadrilateral

meshes. ACM Trans. Graph. 38, 6 (2019).

David Palmer, David Bommes, and Justin Solomon. 2020. Algebraic Representations

for Volumetric Frame Fields. ACM Trans. Graph. 39, 2 (2020).

Chi-Han Peng, Eugene Zhang, Yoshihiro Kobayashi, and Peter Wonka. 2011. Connec-

tivity editing for quadrilateral meshes. In Proceedings of the 2011 SIGGRAPH Asia

conference.

Nico Pietroni, Marcel Campen, Alla Sheffer, Gianmarco Cherchi, David Bommes, Xifeng

Gao, Riccardo Scateni, Franck Ledoux, Jean Remacle, and Marco Livesu. 2022. Hex-

Mesh Generation and Processing: A Survey. ACM Trans. Graph. 42, 2 (2022).

Nico Pietroni, Stefano Nuvoli, Thomas Alderighi, Paolo Cignoni, Marco Tarini, et al.

2021. Reliable feature-line driven quad-remeshing. ACM Transactions on Graphics

40, 4 (2021).

Emil Praun, Wim Sweldens, and Peter Schröder. 2001. Consistent mesh parameter-

izations. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques. 179–184.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.

Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 4 (2017).

Maxence Reberol, Alexandre Chemin, and Jean-Francois Remacle. 2019. Multiple

Approaches to Frame Field Correction for CAD Models. In Proc. 28th International

Meshing Roundtable.

Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-

minimizing injective maps between surfaces. ACM Trans. Graph. 38, 6 (2019).

Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt. 2020. Inter-surface

maps via constant-curvature metrics. ACM Trans. Graph. 39, 4 (2020), 119–1.

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-surface

mapping. In ACM SIGGRAPH 2004 Papers. 870–877.

Chun Shen, Shuming Gao, and Rui Wang. 2021. Topological operations for editing the

singularity on a hex mesh. Engineering with Computers 37, 2 (2021), 1357–1375.

Hanxiao Shen, Leyi Zhu, Ryan Capouellez, Daniele Panozzo, Marcel Campen, and Denis

Zorin. 2022. Which cross fields can be quadrangulated? Global parameterization

from prescribed holonomy signatures. ACM Trans. Graph. 41, 4 (2022).

Kenshi Takayama. 2019. Dual Sheet Meshing: An Interactive Approach to Robust

Hexahedralization. Comp. Graph. Forum 38, 2 (2019), 37–48.

Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. 2004. Polycube-maps.

ACM Trans. Graph. 23, 3 (2004), 853–860.

Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. 2006. Designing Quadrangulations

with Discrete Harmonic Forms. In Proceedings of the Fourth Eurographics Symposium

on Geometry Processing (SGP ’06). Eurographics Association, 201–210.

Isaac J Trotts, Bernd Hamann, Kenneth I Joy, and David F Wiley. 1998. Simplification of

tetrahedral meshes. IEEE.

W. T. Tutte. 1963. How to draw a graph. Proc. Lond. Math. Soc. 13 (1963), 743–767.

Ryan Viertel, Matthew L Staten, and Franck Ledoux. 2016. Analysis of Non-Meshable

Automatically Generated Frame Fields. Technical Report. Sandia National Lab.(SNL-

NM), Albuquerque, NM (United States).

Ofir Weber and Denis Zorin. 2014. Locally injective parametrization with arbitrary

fixed boundaries. ACM Trans. Graph. 33, 4 (2014).

Jiaran Zhou, Changhe Tu, Denis Zorin, and Marcel Campen. 2020. Combinatorial

construction of seamless parameter domains. Comp. Graph. Forum 39, 2 (2020),

179–190.

A ALGORITHM DETAILS

Alg. 1 details the ArcPatchShift. The case differentiation in line

1 distinguishes whether arc 𝑎 initially lies on one or two edges of

the triangle 𝑓 it is shifted across. Note that there is a slight differ-

ence between the pseudocode and the depictions shown before: the

traversed facet is not inserted into the follow-up patch beforehand

(only to be toggled out of it with the last ArcShift), but instead

is toggled in with the final ArcShift and then erased from the

arc afterwards (line 2). Both variants are equivalent, but the latter

allows for a more concise notation.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:19

Algorithm 1: ArcPatchShiftp𝑎, 𝑓 q

Input: Tet mesh M “ t𝐶, 𝐹, 𝐸,𝑉 u, cell complex S “ t𝐵, 𝑃,𝐴, 𝑁 u,

embedding IS fl ®IM , arc 𝑎P𝐴, incident face 𝑓 P𝐹

Output: Consistent IS with 𝑎 shifted across 𝑓

𝐸𝑎 “ edges 𝑒 of 𝑓 with
®I𝑒 “ 𝑎

ArcShiftp𝑎, 𝑓 q

1 𝑥 “

#

𝑒 P𝐸𝑎 if|𝐸𝑎 | “ 1

𝑣 P 𝑉 shared by 𝑒1, 𝑒2 P𝐸𝑎 otherwise

repeat

𝐵𝑓 “ blocks incident to 𝑓

foreach block 𝑏 P𝐵𝑓 do

while there is a patch 𝑝 of 𝑏 incident to 𝑥 do

while there is a face 𝑓 1 PI𝑝 incident to 𝑥 do

𝑐 = cell of block 𝑏 incident to 𝑓 1

PatchShiftp𝑝, 𝑐q

2
®I 𝑓 “ 0

until no embedding updates performed

Algorithm 2: NodeArcPatchShiftp𝑛, 𝑒q

Input: Tet mesh M “ t𝐶, 𝐹, 𝐸,𝑉 u, cell complex S “ t𝐵, 𝑃,𝐴, 𝑁 u,

embedding IS fl ®IM , node 𝑛P𝑁 , edge 𝑒 P𝐸

Output: consistent embedding IS with 𝑛 shifted across 𝑒

𝑣 “ I𝑛
NodeShiftp𝑛, 𝑒q

repeat

𝑃𝑒 “ patches incident to 𝑒

𝐵𝑒 “ blocks incident 𝑒

foreach patch 𝑝 P𝑃𝑒 do

if there is an arc 𝑎 of 𝑝 incident to 𝑣 then

𝑎 “ arc of 𝑝 incident to 𝑣

while there is an edge 𝑒 PI𝑎 incident to 𝑣 do

𝑓 “ face 𝑓 PI𝑝 incident to 𝑒

ArcPatchShiftp𝑎, 𝑓 q

1
®I𝑒 “ 0

foreach block 𝑏 P 𝐵𝑒 do

while there is a patch 𝑝 of 𝑏 incident to 𝑣 do

while there is a face 𝑓 PI𝑝 incident to 𝑣 do

𝑐 “ cell 𝑐 PI𝑏 incident to 𝑓

PatchShiftp𝑝, 𝑐q

until no embedding updates performed

Alg. 2 details ArcPatchShift. Note that, here again, the pseu-

docode differs from the illustrations in that it does not append the

traversed edge into the follow-up arcs beforehand (which would

result in the arc getting toggled out with the last ArcPatchShift)

but instead removes it after it has been toggled in with the final

ArcPatchShift.

Note that both, ArcPatchShift and NodeArcPatchShift, con-

tain unordered loops over incident elements. These can indeed be

processed in arbitrary order, this has only geometric effects on the

resulting embedding.

Alg. 3 details the execution of the patch bisection operator and

Alg. 4 that of the block bisection operator, assuming executability.

Algorithm 3: BisectPatch(p)

Input: Aligned T-mesh T “ t𝐵, 𝑃,𝐴, 𝑁 u, quantization ℓ𝐴 ,

embedding
®IM , quasi-pillow patch 𝑝 “ t𝑎1, 𝑎2, . . . , 𝑎𝑛u

Output: 𝑝 bisected

“

𝑆Ò, 𝑆Ó

‰

“ any opposite sides with a total of three or more arcs
“

𝑎Ò, 𝑎Ó

‰

“ first arcs of 𝑆Ò, 𝑆Ó on same end of 𝑝 , s.t. ℓ𝑎Ò
ě ℓ𝑎Ó

if ℓ𝑎Ò
ą ℓ𝑎Ó

then

𝑣 “ choose vertex in interior of I𝑎
add node 𝑛new with I𝑛new

“ 𝑣

split 𝑎Ò “ p𝑛0, 𝑛1q into 𝑎1 “ p𝑛0, 𝑛newq and 𝑎2 “ p𝑛new, 𝑛1q

split I𝑎Ò
into I𝑎1 and I𝑎2 at 𝑣

ℓ𝑎1 “ ℓ𝑎Ó
and ℓ𝑎2 “ ℓ𝑎Ò

´ ℓ𝑎Ó

𝑎Ò “

#

𝑎1 if 𝑎1 is on same end of 𝑝 as 𝑎Ó,

𝑎2 otherwise

“

𝑛Ò, 𝑛Ó

‰

“ second nodes of 𝑎Ò, 𝑎Ó

r𝐴Ð, 𝐴Ñs “ partition arcs of 𝑝 at 𝑛Ò, 𝑛Ó

𝐸Ù “ shortest path between I𝑛Ò
and I𝑛Ó

through interior of I𝑝
𝑎new “ new arc between 𝑛Ò and 𝑛Ó

I𝑎new “ 𝐸Ù and ℓ𝑎new “ 0

split 𝑝 into 𝑝Ð“ 𝐴ÐY t𝑎newu and 𝑝Ñ “ 𝐴Ñ Y t𝑎newu

split I𝑝 into I𝑝Ð
and I𝑝Ñ at I𝑎new

Algorithm 4: BisectBlock(b)

Input: Aligned T-mesh T “ t𝐵, 𝑃,𝐴, 𝑁 u, quantization ℓ𝐴 ,

embedding
®IM , quasi-pillow block 𝑏 “ t𝑝1, 𝑝2, . . . , 𝑝𝑛u

Output: 𝑏 bisected

while there is a patch 𝑝 with more than 4 arcs on 𝑏 do

BisectPatchp𝑝q

𝐴˝ “ any cycle of ě2 equally aligned arcs on block 𝑏

r𝑃Ð, 𝑃Ñs “ partition patches of 𝑏 at 𝐴˝

𝑝new “ new patch incident to 𝐴˝

I𝑝new “
Ť

𝑝1P𝑃Ð
I𝑝1

while I𝑝new overlaps with any I𝑝1 do

foreach cell 𝑐 PI𝑏 incident to the overlap do

PatchShiftp𝑝new, 𝑐q

split 𝑏 into 𝑏Ð“ 𝑃ÐY t𝑝newu and 𝑏Ñ “ 𝑃Ñ Y t𝑝newu

split I𝑏 into I𝑏Ð
and I𝑏Ñ at I𝑝new

For simplicity of exposition, the latter algorithm initially extends all

T-nodes on the block boundary (rather than focusing on creating the

cycle for one specific T-arc only). In subsequent recursive bisections

of sub-blocks then no further such extensions are necessary.

A.1 Boundaries

Last Successor. The operators NodeArcPatchShift and Arc-

PatchShift, in the form described above, first insert the traversed

edge (facet) into the follow-up arc (patch), and then lift off the arc

(patch) to prevent overlaps with subsequent ones. For the last arc

(patch) encountered (cf. Fig. 9p-r) this is not strictly necessary, since

there are no further elements to be adjusted that could require

the freed up space. As such, the shift operation should simply be

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:20 • Hendrik Brückler and Marcel Campen

skipped for the last successor—for efficiency and to aid the handling

of boundary elements in the following.

Boundary Elements. Cell complex boundary elements are (in the

usual case of a surjective embedding) embedded in the background

mesh’s boundary. To maintain surjectivity, they need to be con-

strained to stay within that boundary. For that reason a boundary

node is only allowed to be shifted across a boundary edge and a

boundary arc is only allowed to be shifted across a boundary face.

When an arc is shifted across a facet within the boundary, note

that the boundary patch dragged behind it is necessarily the last

successor and thus, by the above skip rule, simply is extended by

the traversed boundary face. It thus remains on the boundary.

For a node shift within the boundary additional care needs to be

taken, as the order in which the incident arcs are processed is not

uniquely determined. To keep an incident boundary arc embedded

in the boundary, it must be picked in the loop of Alg. 2 only when

it is reached via a boundary patch. It may be reached (earlier) via a

non-boundary patch, but shifting it via such a patch would lift it off

the boundary.

In general, because the collapse operators are directed, i.e. they

move one side of the collapsed element onto the other side, in a

collapse where one side is on the boundary, this side must always

be the stationary side. A collapse of a non-boundary element whose

sides are both on the boundary cannot be performed consistently.

A.2 Background Mesh Refinement

Whenever an ArcShift or a PatchShift would violate injectivity,

i.e. two arcs or patches would become overlapping, refinement of

the background mesh is needed. This creates the degrees of freedom

necessary to validly maintain the embedding while performing the

shift (effectively over part of the original triangle or tetrahedron).

Specifically, an overlap may be either between the images of two

distinct cells, or within one cell’s image, making it non-manifold.

In the following we refer to any background mesh element on

which such an overlap would occur in the context of a concrete shift

operation as forbidden. The following refinement rules are applied

to prevent any kind of overlap:

I In NodeArcPatchShift, before a sequence of ArcPatchShifts

along a triangle fan is performed: Split any inner edges of the

triangle fan whose outer vertex is forbidden (Fig. 23). Then

recompute the fan.

II In ArcPatchShift, before a sequence of PatchShifts along

a tet fan is performed: Split all inner triangles of the tet fan

whose outer vertex or outer edge(s) are forbidden. Then re-

compute the fan.

III Before an ArcShift: Split the triangle (1:3) if it is incident

to forbidden vertices or edges. Then the arc can be shifted

across a subtriangle (Fig. 24).

IV Before an PatchShift: Split the tetrahedron (1:4) if it is inci-

dent to forbidden vertices, edges, or facets. Then the patch

can be shifted across a subtetrahedron (Fig. 25).

Between operations we remove vertices introduced by earlier

refinement that are no longer needed for an injective embedding.

This is done by collapsing an incident edge of the background mesh.

Fig. 23. Background mesh refinement of a triangle fan (or a tet fan in

cross section view) to prevent overlaps with forbidden vertices (red) during

NodeArcPatchShift or ArcPatchShift. In the end, shifts can be carried

out over subtriangles (or subtetrahedra) without causing overlaps.

Fig. 24. Background mesh refinement of a triangle (1:3 split) to prevent

overlap with a forbidden vertex or edge (red) in ArcShift.

Fig. 25. Background mesh refinement of a tetrahedron (1:4 split) to prevent

overlap with a forbidden vertex or edge (red) in PatchShift.

A.3 Background Mesh Remeshing

Due to refinement of the background mesh (during embedding

updates but also already during motorcycle complex tracing), the

background mesh’s quality can become low, containing elements

with tiny angles. While not a problem for our collapsing method, it

increases the hardness of the subsequent blockwise mapping.

To improve the numerical condition of the problem for mapping

methods based on numerical optimization (which we prefer for their

simplicity wherever possible), we remesh the background mesh

while maintaining the embedding of the complex. For simplicity

we make use of a straightforward greedy approach: The standard

operations edge collapse, edge split, face swap, and vertex shift

are greedily applied on the background mesh wherever this locally

improves the worst inner (facet and tet) angles. To maintain the

embedding, a collapse and a swap are only allowed within a set of

background mesh elements that lie in the embedding image of the

same block, patch, or arc.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:21

B FEATURE SUPPORT

We will consider in the following three types of features that the

to be generated hexahedral mesh may be asked to align to: fea-

ture points, feature curves, and feature surfaces. We assume that

such points coincide with vertices of the background mesh, while

curves and surfaces coincide with edges or faces, respectively. The

mesh elements associated to features will consequently be referred

to as feature vertices, edges, and facets. They may also coincide

with boundaries of the mesh or singularities of a seamless map on

the mesh. In fact, our approach to extend the motorcycle complex

generation method of Brückler et al. [2022b] and the quantization

method of Brückler et al. [2022a] to support such features is based

on handling feature curves similarly to singular curves and feature

surfaces similarly to boundary regions.

Seamless Parametrization. Consider first the process of generating

a seamless parametrization (or map) for a given background mesh

and an associated singularity graph, step (1) of the pipeline outlined

in Sec. 7.1, as described in detail for instance in [Nieser et al. 2011; Liu

et al. 2018]. The usual requirement (imposed by constraints in this

process) is that both, boundary facets and singular edges, must be

aligned under the parametrization, meaning they coincide with (part

of) an iso-surface or iso-curve of the parametrization. This results

in (irregular) edges and boundary facets of the later to be generated

hex mesh geometrically matching singularities and boundaries of

the object. The same should be achieved for feature curves and

surfaces—as well as for feature points, which hex mesh vertices

should coincide with. In the following we therefore assume that

features, in analogy to singularities, have been taken into account

by means of alignment constraints in the process of generating the

seamless parametrization.

To simplify handling the features, we assume these conventions

are followed by the set of features:

‚ The end points of a feature curve are marked as feature points

(or the curve is cyclic).

‚ The boundary of a feature surface is marked as feature curves

(or the surface forms a closed manifold surface).

‚ The intersection of any two differently aligned feature curves

is marked as feature point.

‚ The intersection of any two differently aligned feature sur-

faces is marked as feature curve and has constant alignment.

Numerical Sanitization. To then safely facilitate the construction

of the motorcycle complex based on the generated volumetric seam-

less parametrization, the numerical sanitization method described in

[Brückler et al. 2022b] can be adapted to respect feature constraints

by two key modifications:

‚ Treat feature facets equivalently to boundary facets for the

purpose of determining cut edges and align sheets.

‚ Introduce align edges (isolated feature curves not incident to

any align sheet) and align branches, i.e. connected sets of align

edges bounded by additional (or existing) nodes. Additional

alignment constraints that not only constrain one but two

coordinate components are introduced for the end nodes of

each align branch. Back-substititution for non-node vertices

can be performed for such align branches exactly as is done

for singular branches.

Feature-Aligned T-Mesh. Next, to guarantee representation of fea-

tures in the resulting hexahedral mesh we have to make sure these

get represented in the intermediate T-mesh. To ensure this, we

augment the construction algorithm for the motorcycle complex

[Brückler et al. 2022b] based on the feature-aligned seamless para-

metrization by the following rules:

‚ Mark all feature facets as walls.

‚ Treat non-singular feature edges like singular edges, i.e. spawn

four expanding walls on them, each expanding in one of the

parametric directions orthogonal to the aligned edge.

‚ At each feature node, for all three parametric dimensions

spawn a wall.

‚ In the complex reduction routine preserve all walls that are

incident on features.

Feature-Separating Quantization. Finally, during quantization com-

putation [Brückler et al. 2022a], to prevent features from getting

collapsed onto each other under the quantization we treat them

similarly to singularities and boundaries (which likewise must not

be collapsed onto each other). To this end, we define three additional

critical entity classes in accordance with [Brückler et al. 2022a]:

Definition 1 (Feature Link). Amaximal sequence of one or more

feature arcs connected via regular nodes is a feature link. Note that

it may connect two feature nodes, form a loop rooted at one feature

node, or form a cycle.

Definition 2 (Feature Region). A maximal set of one or more

feature patches connected via regular arcs is a feature region. Note

that it can be a closed surface or be bounded by feature arcs.

The set of critical entities, that the method relies on, is then ex-

tended to include these two classes, as well as the feature nodes.

When then executing the quantization procedure, it produces a

quantization on the feature-aligned T-mesh that properly separates

boundaries, singularities, and features.

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:22 • Hendrik Brückler and Marcel Campen

Table 2. For inputs from the second dataset, absolute numbers and percentages of zero-elements (blocks, patches, arcs) in the coarsest quantization are shown

in grey, followed by the overall percentage of zero-elements. Furthermore the number of collapses (block, patch, arc) and bisections (block, patch) performed

to remove all zero-elements are shown in grey, followed by the grand total of operations. The last column reports the relative decrease in T-mesh complexity.

Model |𝐵0| |𝑃0| |𝐴0|
|S

0
|

|S|
Ù𝐵 Ù𝑃 Ù𝐴 |𝐵 |𝑃

ř
ř
ř

𝚫|S|

Fcbpsvdfhm Example 2 149 51% 625 45% 636 30% 37% 172 654 617 23 52 1518 58%

AMGvVPD bumpy torus 91 19% 486 23% 497 18% 20% 115 529 481 24 49 1198 33%

Agatmsmg Example 3 71 20% 309 20% 310 14% 17% 88 345 314 17 42 806 28%

Psfclosav cubespikes model out 34 20% 242 29% 270 22% 25% 71 305 279 33 71 759 39%

AMUCIP hollow-eight-hex 24 21% 117 22% 125 16% 19% 80 228 173 56 123 660 34%

Psfclosav cubespikes model in 26 17% 209 28% 242 23% 24% 47 239 230 17 34 567 40%

Agatmsmg Example 2 34 14% 159 14% 156 10% 12% 62 218 186 28 62 556 26%

Agatmsmg Example 4 41 15% 181 15% 165 10% 12% 65 229 188 24 48 554 25%

SPfPHM Double hinge WH 32 54% 136 48% 132 31% 39% 64 200 160 32 84 540 59%

PHOvER impeller stresstest out 26 17% 137 17% 148 13% 15% 60 200 177 34 48 519 30%

AMUCIP rockerarm-hex 14 7% 96 11% 104 9% 10% 37 141 123 23 45 369 18%

EVPC Fertility hex-largel 34 14% 131 14% 114 9% 11% 46 155 124 12 21 358 21%

Psfclosav rockerarm polycube in 9 18% 43 17% 43 11% 14% 37 101 71 28 72 309 24%

Psfclosav cubespikes polycube out 23 46% 138 51% 158 37% 42% 28 132 125 2 2 289 60%

Psfclosav cubespikes polycube in 24 49% 131 49% 151 36% 41% 28 128 123 3 0 282 59%

ECMfGTS femur shell1 25 60% 102 52% 104 35% 43% 29 113 110 4 12 268 67%

Psfclosav rockerarm polycube out 16 29% 73 26% 71 17% 21% 26 92 78 10 21 227 33%

PMGfPBC bunny hex opt 15 12% 69 13% 66 10% 11% 25 91 74 10 25 225 19%

Psfclosav chinese dragon polycube in 12 24% 67 25% 71 17% 21% 24 89 76 11 24 224 36%

PMGfPBC BU hex opt 17 13% 69 13% 62 9% 11% 24 80 64 7 11 186 18%

AMuSF rod 9 26% 43 25% 44 17% 21% 20 68 58 11 27 184 32%

AMuSF double 7 14% 42 19% 41 14% 16% 24 67 49 17 25 182 29%

SPfPHM Double hinge NH 8 19% 38 18% 44 14% 16% 16 62 60 8 24 170 28%

AMGvVPD asm001 5 6% 32 9% 30 6% 7% 21 58 40 16 30 165 12%

SPfPHM Gear 19 39% 70 29% 64 17% 23% 19 70 64 0 0 153 37%

lCoPMfCS rod 9 10% 38 11% 32 7% 9% 19 58 42 10 22 151 14%

Psfclosav bunny polycube out 12 32% 56 29% 61 21% 25% 14 60 57 2 7 140 40%

SVDvGS twistedu 6 29% 34 35% 32 23% 28% 16 52 40 10 18 136 45%

SVDvGS rotellipse padded 6 29% 34 34% 32 23% 28% 16 52 40 10 17 135 45%

AMuSF joint 11 32% 44 27% 41 17% 22% 15 56 47 4 12 134 34%

HMGvCQ pone.0177603.s003 11 32% 44 27% 41 17% 22% 15 56 47 4 12 134 34%

Psfclosav bunny polycube in 11 31% 51 28% 55 19% 23% 14 57 54 3 5 133 39%

SPfPHMWrench 11 31% 47 27% 50 19% 23% 13 53 54 2 6 128 38%

Psfclosav block polycube out 10 29% 47 28% 54 20% 24% 12 52 56 2 4 126 38%

AMuSF rockerarm 6 4% 46 8% 54 7% 7% 10 52 54 4 2 122 13%

AMUCIP fancy ring-hex 12 55% 50 49% 51 34% 41% 14 52 47 2 6 121 59%

DSM fandisk 8 24% 36 22% 37 15% 18% 13 46 42 5 10 116 32%

Psfclosav chinese dragon polycube out 9 20% 44 19% 46 13% 16% 11 49 46 2 7 115 24%

AMuSF sculpture-A 13 48% 52 41% 52 28% 34% 13 50 48 0 0 111 52%

SPfPHM Column 10 37% 46 36% 46 24% 30% 12 46 42 2 2 104 44%

Psfclosav block polycube in 8 24% 34 20% 36 14% 17% 10 40 40 2 6 98 30%

Psfclosav fandisk polycube in 4 20% 18 17% 18 11% 14% 11 34 26 7 18 96 21%

DSM fandisk.liu18 6 21% 27 20% 27 13% 16% 11 37 32 5 10 95 30%

AMuSF sculpture-B 10 30% 40 26% 43 18% 22% 10 38 39 0 0 87 32%

Psfclosav asm polycube in 1 5% 4 4% 4 3% 3% 9 24 16 8 24 81 1%

SPfPHM Chamfer L4 7 54% 27 43% 26 26% 34% 8 30 28 1 3 70 53%

Psfclosav teapot polycube in 1 4% 14 10% 20 8% 9% 6 23 23 5 12 69 16%

Psfclosav fandisk polycube out 5 22% 21 18% 20 11% 15% 7 28 24 2 7 68 27%

Psfclosav teapot polycube out 1 4% 11 7% 16 7% 7% 6 22 22 5 13 68 12%

Psfclosav asm polycube out 3 16% 12 13% 12 8% 10% 5 22 20 2 10 59 16%

AMuSF fandisk 5 20% 22 18% 22 12% 15% 6 24 23 1 2 56 27%

HMGvCQ fandisk 5 20% 21 18% 20 11% 14% 6 23 21 1 2 53 25%

HMGvCQ pone.0177603.s002 4 16% 18 15% 18 10% 12% 5 20 19 1 2 47 25%

Psfclosav hand polycube in 5 25% 18 18% 17 11% 14% 5 18 17 0 0 40 22%

Psfclosav hand polycube out 2 11% 9 9% 11 7% 8% 2 9 11 0 0 22 13%

AMUCIP knot-hex 3 8% 10 7% 8 4% 6% 3 10 8 0 0 21 9%

Psfclosav table2 polycube in 1 8% 5 8% 6 6% 6% 2 8 8 1 2 21 15%

AMUCIP joint-hex 2 10% 9 9% 8 5% 7% 2 9 8 0 0 19 11%

AMuSF ellipsoid-A 1 7% 6 9% 6 6% 7% 2 7 6 1 0 16 12%

Psfclosav femur polycube out 1 6% 6 7% 7 5% 6% 1 6 7 0 0 14 12%

lCoPMfCS kitty 1 2% 6 3% 6 2% 2% 1 6 6 0 0 13 4%

AMUCIP kitten-hex 1 2% 6 3% 6 2% 2% 1 6 6 0 0 13 4%

AMuSF hanger 1 4% 4 4% 4 2% 3% 1 4 4 0 0 9 5%

ECMfGTS femur shell0 1 11% 4 9% 4 6% 7% 1 4 4 0 0 9 11%

DSM hanger 1 5% 4 4% 4 3% 3% 1 4 4 0 0 9 5%

SMF hex brokenbullet 0 0% 2 3% 4 4% 3% 0 2 4 0 0 6 5%

Psfclosav table1 polycube in 0 0% 1 1% 2 1% 1% 0 1 2 0 0 3 2%

Psfclosav table1 polycube out 0 0% 1 1% 2 1% 1% 0 1 2 0 0 3 5%

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

Collapsing Embedded Cell Complexes for Safer Hexahedral Meshing • 180:23

Table 3. For inputs from the third dataset, numbers of marked feature elements (facets, edges, and vertices), as well as absolute numbers and percentages of

zero-elements (blocks, patches, arcs) in the coarsest quantization are shown in grey, followed by the overall percentage of zero-elements. Furthermore the

number of collapses (block, patch, arc) and bisections (block, patch) performed to remove all zero-elements are shown in grey, followed by the grand total of

operations. The last column reports the relative decrease in T-mesh complexity.

Model |𝐹
feature

| |𝐸
feature

| |𝑉
feature

| |𝐵
0

| |𝑃
0

| |𝐴
0

|
|S

0
|

|S|
Ù𝐵 Ù𝑃 Ù𝐴 |𝐵 |𝑃

ř
ř
ř

𝚫|S|

i18b s22 27680 1578 60 224 38% 931 34% 825 22% 28% 354 1185 906 123 299 2867 44%

i06b m6 23964 1545 76 254 43% 1112 42% 1033 29% 35% 321 1191 946 63 100 2621 55%

i13c s6 18872 1544 99 170 49% 675 41% 620 26% 33% 263 879 713 93 224 2172 54%

i13u s6 43268 2609 99 177 53% 699 44% 637 28% 36% 266 886 721 89 205 2167 57%

i15b s8 11798 944 71 138 29% 629 28% 576 19% 23% 246 835 648 106 233 2068 40%

i09c m9 74688 2440 76 97 43% 359 34% 321 21% 28% 210 621 465 113 281 1690 44%

i09u m9 81796 2496 76 93 41% 336 32% 293 19% 25% 209 614 454 116 291 1684 41%

s08b cross cyls dr 8188 480 14 122 48% 545 46% 505 31% 38% 168 614 487 44 76 1389 61%

i14b s7 9576 631 23 101 40% 421 35% 366 22% 28% 174 561 420 72 160 1387 45%

i01u m1 27178 1838 76 99 39% 411 35% 406 24% 29% 123 455 413 24 56 1071 47%

n05c box min pcyls 8852 654 27 41 17% 217 18% 220 13% 15% 121 372 287 80 182 1042 28%

i01c m1 14788 1179 76 102 43% 402 36% 385 24% 30% 125 446 396 23 47 1037 49%

n05u box min pcyls 17052 1032 27 42 18% 221 20% 220 14% 17% 113 360 279 68 166 986 29%

i23c s31 11486 1042 76 66 33% 278 29% 269 19% 24% 107 362 307 41 96 913 38%

i17u s20 26960 1421 51 77 37% 310 32% 288 21% 26% 104 367 313 27 63 874 44%

i12u s5 31836 2304 88 83 40% 313 33% 295 21% 27% 103 364 321 20 50 858 44%

i02u m2 35866 1842 46 69 42% 294 37% 290 25% 31% 99 354 303 30 52 838 51%

i12c s5 17486 1485 88 79 41% 299 34% 280 22% 28% 98 345 299 19 47 808 46%

i06u m6 36658 2285 68 69 53% 275 45% 262 29% 37% 93 329 280 23 61 786 56%

i06c m6 27010 1858 68 66 55% 257 45% 244 29% 37% 88 309 265 22 59 743 57%

i02c m2 14296 1030 46 66 40% 282 36% 284 25% 31% 85 311 277 18 35 726 49%

i22c s27 10618 1134 94 51 27% 228 25% 230 17% 21% 74 285 255 23 56 693 35%

i25u s40 25736 1971 77 47 34% 208 31% 193 19% 25% 80 261 201 31 69 642 41%

i18u s22 27850 1803 52 60 55% 222 43% 195 26% 34% 78 257 208 18 38 599 54%

i18c s22 11188 1000 52 60 53% 236 44% 216 27% 35% 73 257 216 13 26 585 56%

n08c pentapyr 2184 179 6 35 53% 150 44% 133 27% 35% 74 213 148 36 71 542 54%

n03b skijump box cyl 10926 621 20 35 21% 161 22% 146 15% 18% 64 210 159 29 64 526 29%

i20u s25 47926 2597 58 46 36% 179 30% 170 19% 25% 58 207 179 12 31 487 40%

i20c s25 10568 1023 58 44 37% 170 31% 159 20% 25% 52 185 158 8 21 424 41%

s11b cube cyl 5482 358 18 47 35% 190 33% 171 22% 28% 49 192 156 2 2 401 44%

i10c simp 8810 482 19 27 29% 116 27% 110 18% 22% 48 161 126 21 41 397 39%

i22u s27 60416 3456 94 36 27% 145 24% 144 16% 20% 42 158 148 6 16 370 31%

i15u s8 30430 1871 63 33 28% 130 24% 121 15% 20% 45 155 129 12 26 367 32%

i10u simp 18178 894 19 21 24% 97 23% 92 15% 19% 44 140 109 22 51 366 30%

i15c s8 6942 761 63 27 25% 110 22% 105 15% 18% 41 138 117 14 30 340 30%

i25c s40 7818 868 77 26 20% 112 18% 105 12% 15% 39 137 115 13 25 329 27%

s15b cylinder 3774 203 10 29 45% 121 43% 112 29% 36% 33 128 108 4 8 281 55%

n10u qtorus cyl 12146 403 6 8 11% 50 15% 50 10% 12% 30 83 58 22 48 241 19%

s08u cross cyls dr 5322 267 6 17 26% 80 27% 79 19% 22% 27 100 87 10 14 238 41%

i11u s1 34824 1528 27 20 42% 77 34% 75 22% 28% 25 89 81 5 11 211 45%

s08c cross cyls dr 3468 203 6 14 25% 63 24% 63 17% 20% 25 83 69 11 19 207 36%

i14c s7 5014 389 15 17 46% 66 38% 59 23% 30% 24 82 67 7 17 197 48%

i11c s1 7310 603 27 20 41% 81 35% 82 23% 29% 23 84 81 3 5 196 47%

n12b limit cycle genus0 5464 334 14 15 19% 82 24% 84 18% 21% 17 86 82 2 4 191 36%

s11c cube cyl 1926 174 10 16 42% 70 39% 69 26% 32% 19 72 66 2 1 160 51%

i14u s7 35038 1406 15 12 32% 51 29% 50 19% 24% 18 64 56 6 14 158 38%

s16c torus 4478 116 1 14 58% 61 54% 61 37% 45% 21 66 56 5 7 155 70%

s06b dodecahedron 1684 186 28 8 4% 53 6% 58 5% 5% 13 62 59 5 9 148 9%

n02b skijump anti box cyl 10288 588 22 4 3% 24 5% 22 3% 4% 18 43 27 14 30 132 6%

s05u cube sphere 11748 527 10 15 41% 57 35% 54 23% 29% 16 58 53 1 1 129 46%

n07c anti pyramid 4954 375 13 6 10% 37 13% 38 9% 11% 13 48 42 7 13 123 23%

n04b transition prism 2936 252 14 18 32% 58 24% 44 13% 19% 18 58 44 0 0 120 31%

s09b bridge 4200 323 22 13 16% 49 15% 42 10% 13% 15 52 42 2 1 112 22%

n09u pyramid 7844 342 5 10 40% 37 30% 29 16% 23% 16 46 32 6 8 108 37%

n10c qtorus cyl 5164 230 6 7 11% 35 13% 33 8% 10% 12 43 36 5 9 105 18%

n08u pentapyr 6042 352 6 6 21% 28 19% 27 13% 16% 13 40 30 7 15 105 23%

n09c pyramid 2324 160 5 8 32% 29 24% 23 13% 19% 13 39 28 5 10 95 30%

n03u skijump box cyl 4460 320 12 10 34% 39 29% 36 18% 24% 11 40 36 1 0 88 38%

n03c skijump box cyl 2188 196 12 9 32% 36 28% 34 18% 23% 10 37 34 1 0 82 36%

n06u anti pentapyr 1088 140 14 4 8% 22 9% 24 7% 8% 7 27 26 3 5 68 14%

n12u limit cycle genus0 7158 336 6 5 42% 22 39% 24 27% 32% 6 23 22 1 3 55 45%

n06c anti pentapyr 4914 367 14 2 3% 17 6% 22 5% 5% 4 20 23 2 4 53 10%

s05b cube sphere 36684 1128 18 8 9% 24 7% 18 4% 6% 8 24 18 0 0 50 10%

s17b sphere 3714 112 10 8 18% 24 14% 18 8% 11% 8 24 18 0 0 50 18%

s14b cube corner sub sphere 2648 216 18 7 11% 23 9% 16 5% 7% 8 24 16 1 0 49 12%

s15c cylinder 2362 110 2 5 50% 21 45% 22 31% 37% 5 20 20 0 0 45 55%

s15u cylinder 6896 223 2 5 50% 21 45% 22 31% 37% 5 20 20 0 0 45 55%

n12c limit cycle genus0 1780 139 6 4 33% 18 32% 20 23% 27% 4 17 18 0 0 39 39%

n04c transition prism 718 68 6 4 33% 16 28% 16 18% 23% 4 16 16 0 0 36 36%

n04u transition prism 7890 302 6 4 33% 17 30% 18 20% 25% 4 16 16 0 0 36 36%

s05c cube sphere 2748 205 10 4 15% 14 12% 12 8% 10% 4 14 12 0 0 30 16%

s17c sphere 1702 21 2 4 29% 14 25% 12 16% 21% 4 14 12 0 0 30 33%

s17u sphere 3420 32 2 4 29% 14 25% 12 16% 21% 4 14 12 0 0 30 33%

s07b notch 8902 523 20 3 5% 14 6% 12 4% 5% 3 14 12 0 0 29 8%

s06c dodecahedron 1626 152 20 1 2% 7 4% 7 2% 3% 3 10 8 2 3 26 4%

n02c skijump anti box cyl 2988 268 14 3 27% 10 19% 8 10% 14% 3 10 8 0 0 21 22%

n02u skijump anti box cyl 10686 571 14 3 27% 10 19% 8 10% 14% 3 10 8 0 0 21 22%

s09c bridge 4054 310 14 2 20% 8 16% 8 10% 13% 2 8 8 0 0 18 20%

s09u bridge 11652 618 14 2 20% 8 16% 8 10% 13% 2 8 8 0 0 18 20%

s11u cube cyl 9196 486 10 2 8% 7 7% 6 4% 5% 2 7 6 0 0 15 9%

n07u anti pyramid 21650 955 13 0 0% 3 1% 5 2% 1% 0 3 5 0 0 8 2%

n13b acute line 14122 561 14 0 0% 3 2% 4 2% 2% 0 3 4 0 0 7 3%

s10c cyl cutsphere 1140 94 5 0 0% 2 2% 4 4% 3% 0 2 4 0 0 6 5%

s10u cyl cutsphere 2706 182 5 0 0% 2 2% 4 4% 3% 0 2 4 0 0 6 5%

s07c notch 1442 149 12 0 0% 1 2% 2 3% 2% 0 1 2 0 0 3 4%

s07u notch 3750 276 12 0 0% 1 2% 2 3% 2% 0 1 2 0 0 3 4%

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

180:24 • Hendrik Brückler and Marcel Campen

Table 4. Scaled Jacobian values (min and avg) of hexahedral meshes generated with a meshing pipeline using our collapsing and blockwise IGM remapping

strategy versus a global IGM recomputation, LMFF-opt. Inputs are the non-trivial instances (those that actually require collapsing) from the third dataset. In

line with [Liu and Bommes 2023], a resolution of 100,000 hexahedra was targeted in quantization. The same feature-preserving hex mesh optimization was

applied in both cases, using the Mesquite library [Brewer et al. 2003] as described in [Liu and Bommes 2023]. Note that a valid IGM does not guarantee that

the implied hex mesh always has geometrically valid elements when assuming (tri)linear elements.

Model Ours avg LMFF-opt avg Ours min LMFF-opt min

i01c m1 0.98 0.98 0.13 0.02

i01u m1 0.98 0.98 0.29 0.03

i02c m2 0.95 0.93 0.05 0.30

i02u m2 0.95 0.95 0.10 0.01

i06b m6 0.96 — 0.22 —

i06c m6 0.99 0.98 0.20 0.13

i06u m6 0.99 0.98 0.29 0.16

i09c m9 0.93 0.98 0.03 0.01

i09u m9 0.94 0.95 0.05 0.01

i10c simp 0.95 0.94 0.10 0.10

i10u simp 0.94 0.94 0.01 0.01

i11c s1 0.98 0.98 0.01 0.01

i11u s1 0.99 0.99 0.01 0.01

i12c s5 0.97 0.96 0.05 0.05

i12u s5 0.97 0.96 0.03 0.04

i13c s6 0.93 0.96 0.04 0.07

i13u s6 0.97 0.97 0.04 0.04

i14b s7 0.97 0.97 0.48 0.10

i14c s7 0.98 0.97 0.06 0.10

i14u s7 0.99 0.99 0.02 0.03

i15b s8 0.97 0.98 0.53 0.25

i15c s8 0.99 0.99 0.24 0.25

i15u s8 0.99 0.99 0.33 0.33

i17u s20 0.91 — -0.13 —

i18b s22 0.97 0.97 0.43 0.14

i18c s22 0.98 0.98 0.09 0.11

i18u s22 0.99 0.98 0.06 0.07

i20c s25 0.97 0.97 0.01 0.00

i20u s25 0.98 0.98 0.02 0.02

i22c s27 0.98 0.98 0.03 0.04

i22u s27 0.99 0.98 0.05 0.04

i23c s31 0.96 0.97 -0.03 -0.11

i25c s40 0.97 0.97 0.05 0.11

i25u s40 0.97 0.97 0.04 0.03

n02b skijump anti box cyl 1.00 1.00 0.10 0.10

n02c skijump anti box cyl 0.99 0.99 0.10 0.10

Model Ours avg LMFF-opt avg Ours min LMFF-opt min

n02c skijump anti box cyl 0.99 0.99 0.10 0.10

n02u skijump anti box cyl 1.00 0.99 0.04 0.03

n03b skijump box cyl 0.99 1.00 0.59 0.10

n03c skijump box cyl 0.99 0.99 0.08 0.10

n03u skijump box cyl 0.99 0.99 0.07 0.08

n04b transition prism 0.97 0.98 -0.92 -0.93

n04c transition prism 0.95 0.94 0.22 0.22

n04u transition prism 0.96 0.95 0.22 0.22

n05c box min pcyls 0.97 0.97 -0.66 0.14

n05u box min pcyls 0.98 0.98 -0.14 0.33

n06c anti pentapyr 0.87 0.96 -0.94 -0.71

n06u anti pentapyr 0.96 0.96 -0.42 -0.01

n07c anti pyramid 0.82 0.93 -0.77 -0.84

n07u anti pyramid 0.91 0.91 -0.82 -0.79

n08c pentapyr 0.91 0.89 0.04 0.24

n08u pentapyr 0.87 0.87 0.08 0.18

n10c qtorus cyl 0.96 0.93 0.19 0.00

n10u qtorus cyl 0.97 0.96 0.10 0.32

n12b limit cycle genus0 0.98 0.99 0.50 0.27

s04b tetrahedron 0.97 0.98 0.00 0.01

s05u cube sphere 0.99 0.99 0.37 0.38

s06b dodecahedron 0.98 0.98 0.28 0.28

s07u notch 1.00 0.99 0.68 0.72

s08b cross cyls dr 0.98 0.98 0.33 -0.93

s08c cross cyls dr 0.98 0.98 0.00 0.16

s08u cross cyls dr 0.99 0.99 0.00 0.26

s09b bridge 1.00 1.00 0.62 0.60

s09c bridge 1.00 1.00 0.87 0.92

s09u bridge 1.00 1.00 0.85 0.91

s11b cube cyl 0.99 0.99 0.51 0.49

s11c cube cyl 0.99 0.99 0.41 0.53

s15b cylinder 0.96 0.99 0.39 0.76

s15c cylinder 0.99 1.00 0.77 0.85

s15u cylinder 0.99 0.99 0.75 0.84

s16c torus 0.99 0.99 0.85 0.85

s17c sphere 0.99 0.99 0.68 0.71

ACM Trans. Graph., Vol. 42, No. 6, Article 180. Publication date: December 2023.

	Abstract
	1 Introduction
	1.1 Hexahedral Meshing
	1.2 Embedded Cell Complexes
	1.3 Contribution

	2 Related Work
	3 Background
	3.1 Cell Complex
	3.2 Embedded Cell Complex
	3.3 Cubical Complex

	4 Collapse operators
	4.1 Connectivity Updates

	5 Embedding Updates
	5.1 Base Operators
	5.2 Main Operators
	5.3 Embedded Collapse Operators

	6 T-mesh Collapses
	6.1 Bisection Operators
	6.2 Overall Collapsing Strategy

	7 Hexahedral Meshing
	7.1 IGM Based Meshing Pipeline
	7.2 Blockwise Remapping
	7.3 Singularities & Features
	7.4 Mapping and Meshing

	8 Results
	8.1 Datasets
	8.2 Stress Test
	8.3 Comparison
	8.4 Feature Alignment
	8.5 Block Structuring

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Algorithm Details
	A.1 Boundaries
	A.2 Background Mesh Refinement
	A.3 Background Mesh Remeshing

	B Feature Support

