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Figure 1: We enable the construction of nonlinear rational triangular elements that conform precisely to a given rational curve (left, red) of
arbitrary degree (here quartic). Under a condition on the curve’s complexity, we guarantee these elements’ injectivity by construction (see
the fold-free blue isolines). Arbitrarily complex rational curves can always be split into subcurves that all satisfy this condition (center left).
By integrating this with the recent Bézier Guarding approach, we enable the generation of valid conforming planar triangle meshes with
rational elements for curve-bounded domains (center right); these may serve as feasible starting point for further remeshing (right).

Abstract
We present a reliable method to generate planar meshes of nonlinear rational triangular elements. The elements are guaranteed
to be valid, i.e. defined by injective rational functions. The mesh is guaranteed to conform exactly, without geometric error, to
arbitrary rational domain boundary and feature curves. The method generalizes the recent Bézier Guarding technique, which is
applicable only to polynomial curves and elements. This generalization enables the accurate handling of practically important
cases involving, for instance, circular or elliptic arcs and NURBS curves, which cannot be matched by polynomial elements.
Furthermore, although many practical scenarios are concerned with rational functions of quadratic and cubic degree only, our
method is fully general and supports arbitrary degree. We demonstrate the method on a variety of test cases.

CCS Concepts
• Computing methodologies → Computer graphics; Mesh models; Mesh geometry models; Shape modeling; • Applied com-
puting → Computer-aided design; • Mathematics of computing → Mesh generation;

1. Introduction

The generation of mesh representations for given domains, in par-
ticular for purposes of discretization, is a classical problem. We
consider here the case of planar domains. One can distinguish be-
tween meshes that approximate, and meshes that exactly represent
the domain, i.e. the mesh elements formally form a partition of it. In
case of a planar domain this distinction comes down to the question
whether the mesh precisely conforms to the domain boundary.

The generation of meshes with linear triangular elements is par-
ticularly well researched and many robust algorithms are available.

Unless the domain boundary is of piecewise linear nature, such
meshes can only approximate the domain. Meshes with curved tri-
angular elements defined by higher-order polynomials are more
flexible in this regard. Recent results [MC20, MC21] enable the
generation of such meshes with guarantees of element validity and
exact conformance to curved domain boundaries – as long as they
are polynomial. This still excludes domains with various impor-
tant boundary shapes, including circular and elliptic arcs, and more
generally the practically relevant class of NURBS curves (e.g. for
trimmed surface patch domains), consisting of rational pieces.
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We generalize the Bézier Guarding method [MC20] to support
not only polynomial, but rational curves, which includes all of the
above. We do this in such a way that the method’s beneficial prop-
erties are preserved: the generated mesh with rational triangular el-
ements conforms precisely to the rational domain boundary, as well
as to potential feature or interface curves; each element is guaran-
teed to be valid (i.e. formed by an injective map) by construction;
there are no smoothness assumptions on the input curves.

The central operation in this approach is the construction of a
valid triangular element such that one of its edges takes the shape
of a prescribed curve, while the other two edges are straight. While
this is not generally feasible for arbitrary curves, the construction
is such that any curve can be split into subcurves such that for each
subcurve this construction is feasible. Our key contribution is a con-
struction that enables this for rational curves and triangles, while
provably possessing all the properties of the original polynomial
construction that are required to replace it into the Bézier Guarding
method, preserving its guarantees. This contribution includes:

• a guardability condition for rational curves that will eventually
be satisfied under repeated bisection;

• a construction of rational triangular elements, suitable for any
regular rational curve that satisfies this condition, such that:

– the element conforms to the curve;
– the element is valid, it possesses an injective geometric map;
– under bisection, per subcurve the element’s height over the

curve converges to zero at a faster rate than its width, and, as
a consequence, the inner angles at the curve converge to zero.

The latter convergence property can be ensured by careful varia-
tions of the approach used in the original method. Ensuring validity
requires a major deviation due to the rational nature of the curve
and the sought geometric map.

2. Related Work

The literature on mesh generation is vast. We focus our discussion
on methods for 2D mesh generation with nonlinear elements, in
particular those that support the prescription of curve constraints,
such as domain boundaries and feature curves, that the mesh shall
conform to. Key differences lie in whether a method guarantees
(i) validity (non-degeneration and non-inversion) of elements, and
(ii) precise conformance to constraints (rather than approximation).
Furthermore, the type of employed elements and supported con-
straints (polynomial, rational) is a distinctive criterion.

Polynomial, without both Guarantees. There is quite a list of
methods to generate a mesh of higher-order polynomial triangles
that follow an indirect approach: first generate a mesh with linear
elements, approximating the curve constraints, then perform an in-
cremental deformation procedure with the goal of making the then
curved elements conform the given curves [SP02,LSO∗04,SFJ∗05,
Oli08,PP09,RGPS11,GB12,GPRPS13,XSHM13,TGRL13,XC14,
RGSR16,MEK∗16,PSG16,FP16,TPM18,Pau18,HSG∗19]. While
the deformation can be constrained to prevent the introduction of
any degeneracies or inversions, guarantees of convergence to a
conforming state cannot be given. The non-convexity of the in-
volved deformation problems is a major obstacle in this regard.

Other methods favor conformance, for instance by forcing the ele-
ment onto the curve [DOS99, DOS01, RL14, JQ14]. The downside
is that this either invalidates any guarantee that the resulting de-
formation preserves validity, i.e. does not introduce inversions or
degeneracies, or leads to deformation maps of more complex, non-
polynomial kind – at least unless additional restrictions are imposed
on the shape of the constraint curves.

Polynomial, with both Guarantees. Only recently, polynomial
mesh generation methods offering validity and conformance guar-
antees surfaced. The Bézier Guarding method [MC20] constructs
a polynomial triangular mesh precisely conforming to polynomial
curves. It supports arbitrary polynomial order and the generated
triangular elements are provably valid by construction. Another
method [MC21] in addition guarantees lower bounds on various
mesh quality measures like scaled Jacobian and MIPS distortion in
the meshes it generates. Both methods, however, target polynomial
constraint curves, and their constructions are tightly linked with
specificities of polynomial curves.

Rational, without both Guarantees. The above mentioned in-
direct nonlinear mesh generation idea extends easily to rational
curves and elements. First an approximating linear mesh is con-
structed, then adjusted to enforce conformance, essentially by re-
placing some coefficients, control points, or weights [Mäk05,LJ19,
ADF14, JQ14, BECN∗22]. Validity, i.e. injectivity of the elements,
is not accounted for and may be lost in this adjustment.

Also direct approaches have been taken for rational curves
[EE16], albeit without explicit regard for validity, and with a lo-
cal view on a single curve, rather than a full mesh generation solu-
tion capable of handling complex curve arrangements with corners,
tight passages, or similar features.

In some works, more complex elements (e.g. non-triangular or
piecewise rational) are employed [SRH16, Miu93], or only part
of the mesh generation problem is considered from a theoretical
point of view [GH73,Zla73]. The verification, rather than construc-
tion, of rational elements in terms of injectivity has recently been
addressed by providing conservative Jacobian determinant bounds
[EE20], generalizing ideas from the polynomial case [DOS99].

Rational, with both Guarantees. In this category, to the best of
our knowledge, no method exists. This is exactly the gap filled by
our method presented in the following. Concurrent work [YLC∗22]
addresses a similar problem setting in a related manner.

3. Conforming Rational Bézier Elements

The central operation in the Bézier Guarding approach [MC20] is
the construction of a polynomial triangular element that exactly
conforms to a given polynomial curve and whose geometric map
is, by construction, injective (Figure 1 left). The curve is assumed
to meet a guardability condition that enables this construction. We
recapitulate this condition and construction in Sec. 3.2.

Our goal in this section is to describe a construction of a rational
triangular element conforming to a given rational curve. We also
formulate a condition on the curve that guarantees the injectivity
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of the constructed element, and show how any curve can be seg-
mented into subcurves that meet this condition (Figure 1 center).
Afterwards, in Sec. 4, we will make use of this construction for the
purpose of mesh generation.

3.1. Background

Definition 1 (Bézier Curve) Given control points p0, . . . , pn ∈Rm,
a (polynomial) Bézier curve ccc(t) : [0,1]→ Rm is defined as:

ccc(t) =
n

∑
i=0

piB
n
i (t),

where Bn
i (t) are the Bernstein polynomials of degree n.

Definition 2 (Rational Bézier Curve) Given control points
p0, p1, . . . , pn ∈ Rm and associated non-negative weights
w0,w1, · · · ,wn ∈ R, a rational Bézier curve ccc(t) : [0,1]→ Rm is
defined as [Far02, Ch. 13]:

ccc(t) = ∑
n
i=0 wi piBn

i (t)
∑

n
i=0 wiBn

i (t)
.

Equivalently, we can use homogeneous coordinates, i.e.
p∗i = (wixi,wiyi,wi) for pi = (xi,yi) in the here relevant two-
dimensional case (m = 2), to define

ccc∗(t) =
n

∑
i=0

p∗i Bn
i (t).

Then, for (x,y,w) = ccc∗(t), we have ccc(t) = (x/w, y/w), i.e. ccc is ob-
tained by central projection of ccc∗ onto the plane w = 1, as illus-
trated in Figure 2.

Due to the following lemma [Far02, Ch. 13], we may assume
w0 = wn = 1, which will simplify some constructions in the fol-
lowing.

Lemma 1 (Weight Normalization) For any given positive values
c0,cn, any rational Bézier curve can be reparameterized (without
changing its image) such that w0 = c0 and wn = cn. In particular, it
can be normalized to assume w0 = wn = 1.

The sequence (pi) = p0, . . . , pn of control points we will also
refer to as control polygon, and their differences vi = pi+1 − pi
(0≤ i≤ n−1) as control vectors.

Definition 3 (Rational Bézier Triangle) A Bézier triangle
ppp(u,v) : → Rm of degree n over = {(u,v) | u≥ 0,v≥ 0,u+
v ≤ 1} is defined by its control points (control net) pi j ∈ Rm,
(i≥ 0, j ≥ 0, i+ j ≤ n) as [Far02, Ch. 17]:

ppp(u,v) = ∑
i+ j≤n

pi jB
n
i j(u,v),

where Bn
i j(u,v) are the bi-variate Bernstein polynomials. A rational

Bézier triangle with positive weights wi j is defined by:

ppp(u,v) =
∑i+ j≤n wi j pi jBn

i j(u,v)

∑i+ j≤n wi jBn
i j(u,v)

.

Since a (rational) Bézier triangle conforms to the (rational)
Bézier curves defined by its boundary control points, i.e. those pi j
with i= 0, j = 0, or n− i− j = 0, constructing some triangle ppp(u,v)
(by setting its control points and weights) such that it conforms to

Figure 2: A rational curve (red) in the plane can be interpreted
as the central projection of a polynomial curve (green) in R3.
The polynomial curve’s control points p∗i are given by the weight-
scaled control points pi of the rational curve, elevated to a height
given by the corresponding weights wi.

a given curve is trivial; the challenge lies in achieving injectivity of
the map ppp(u,v). This is addressed in Sec. 3.2.

Definition 4 (Bisection) A (rational) Bézier curve (pi) can be bi-
sected, i.e. subdivided into two subcurves at some parameter value
0< t < 1. In case of a polynomial Bézier curve, the subcurves’ con-
trol points can be computed using de Casteljau’s algorithm, starting
from p0

i = pi:

p j
i = (1− t)p j−1

i + t p j−1
i+1 . (1)

The sequences of intermediate points (p0
0, p1

0, · · · , pn
0) and

(pn
0, pn−1

1 , · · · , p0
n) are the control points of the two subcurves. In

case of a rational Bézier curve, the subcurves’ control points and
weights can be obtained analogously using the rational version of
de Casteljau’s algorithm:

p j
i =

(1− t)w j−1
i p j−1

i + tw j−1
i+1 p j−1

i+1

w j
i

, (2)

w j
i = (1− t)w j−1

i + tw j−1
i+1 . (3)

3.2. Injectivity

A (rational) Bézier triangle ppp(u,v) is locally injective if for all
(u,v) ∈ :

∂

∂u
ppp× ∂

∂v
ppp ̸= 0. (4)

If the map furthermore acts injectively on the domain boundary
∂ , we can conclude that ppp is (not only locally) injective.

The Bézier Guarding method constructs an injective polynomial
Bézier triangle such that one of its edges takes the shape of a given
curve based on the following principle: Assuming that all of the
curve’s control vectors are contained in a convex cone (this is the
guardability condition referred to above in Sec. 3), the other control
points of the triangle (away from that curved edge) are placed such
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Figure 3: Left: control polygon (pi) with blue cones ∨1
i rooted at each control point (except the last, which is not needed). Center: auxiliary

control polygon (p′i), displaced according to the associated weights relative to a point o, with red cones ∨2
i rooted at these. Right: exemplary

placement of control points pi j for a rational Bézier triangle. These satisfy the conditions of Theorem 1, in particular: the control points on
the dashed horizontal line lie in both, the respective blue and red cone (as illustrated for ∨1

3∩∨2
3); all vectors ∆

0
i j (blue) in the top part are

parallel to d (horizontal); all control net vectors ∆
1
i j (red) in the top part are parallel to the left edge. Therefore this triangle is injective.

that certain vectors of the control net are contained in this cone,
while others are contained in a complementary cone (a cone such
that the union of both cones is a halfplane). The partial derivatives
in (4) can be shown to be convex combinations of these vectors, i.e.
they are contained in these two disjoint cones, respectively. This
implies that their cross product cannot vanish, conservatively guar-
anteeing local injectivity by construction.

In the more general case of rational Bézier triangles, the partial
derivatives are more complex, in particular not simply convex com-
binations of control vectors. Therefore the above argument does not
apply, it does not generalize to the rational case.

3.2.1. Guardability

Instead we proceed as follows for the rational case. We first define
the auxiliary points p′i = (1−wi)o+wi pi, where o is an arbitrary
fixed point – its choice in practice is discussed in Sec. 5. See Fig-
ure 3 center for an illustration. The point o can be imagined as
an origin relative to which points pi are scaled by wi to yield p′i .
Moreover, let v′i = p′i+1− p′i for 0≤ i≤ n−1 denote the auxiliary
control vectors. We call a set of vectors {vi} monotone with respect
to a direction d iff d⊺vi > 0 for all i.

Definition 5 (Rational Guardability) We say a rational Bézier
curve is guardable if its control vectors (vi) as well as its auxil-
iary control vectors (v′i) are monotone with respect to a common
direction d and a point o.

Notice that the first half of this definition (related to (vi) only) is
exactly the guardability condition used for the polynomial case in
previous work.

Proposition 3.2 from [MC20] asserts that the control vectors vi
become monotone under repeated bisection, and therefore a poly-
nomial curve becomes guardable. The following lemma asserts that
this extends to the auxiliary control vectors v′i . Hence, if a rational

curve is not guardable, it can be subdivided into a set of subcurves,
such that each subcurve is guardable.

Lemma 2 (Auxiliary Point Convergence) Under repeated bisec-
tion, the subcurves’ normalized weights wi converge to 1, therefore
the auxiliary control points p′i converge to the control points pi, and
the auxiliary control vectors v′i converge to the control vectors vi.

Proof When subdividing a polynomial Bézier curve, computing
control points using recursion (1), each subcurve’s control polygon
converges to a point (on the curve, thus inside the original control
points’ convex hull) under repeated subdivision [PK94]. When bi-
secting a rational curve, the two subcurves’ weights are computed
from the original curve’s weights using (3). As this is the same re-
cursion as (1), it follows that these, per subcurve, converge to a
common positive value. With normalization, this value is 1.

Furthermore, we can show that once a subcurve is guardable, this
property is preserved under further subdivision. This is important
to ensure convergence of the overall meshing algorithm (Sec. 4).

Lemma 3 (Guardability Preservation) Bisection of a guardable
rational curve ccc yields two guardable rational subcurves.

Proof We need to show that monotonicity of {vi} and of {v′i} is
preserved. The former is guaranteed due to the fact that, by (2),
the control vectors of a subcurve are convex combinations of the
original control vectors. For the latter, notice that substituting p′−
(1−w)o = wp, the auxiliary point definition, into (2) yields

p′ j
i = (1− t)p′ j−1

i + t p′ j−1
i+1 . (5)

This is precisely the de Casteljau recursion (1) for polynomial
curves, i.e., the auxiliary points p′ behave under subdivision of the
rational curve just like the control points of a polynomial curve.
Therefore, by an argument completely analogous to Lemma 3.6
from [MC20], the preservation of monotonicity of auxiliary con-
trol vectors under subdivision is shown – essentially because they,
as well, are obtained as convex combinations.

© 2022 The Author(s)
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3.2.2. Sufficient Injectivity Condition

We now describe, for an arbitrary guardable rational curve ccc, a con-
dition on the placement of control points of a rational Bézier trian-
gle ppp, such that it conforms to the curve and is injective.

Let d be a direction for which ccc is guardable, and v+ (v−) the
control vector vi minimizing d⊺vi/||vi|| that points counterclock-
wise (clockwise) relative to d. Analogously, we define v′+, v′− with
respect to the auxiliary control vectors v′i (and direction d). With
these extreme vectors we define two sets of 2D (infinite, half) cones:

• blue cone ∨1
i with apex at point pi and boundary directions v+

and −v− (Figure 3 left),
• red cone ∨2

i with apex at point p′i and boundary directions v′+
and −v′− (Figure 3 center).

Note that for a guardable rational curve, with monotone (auxiliary)
control vectors, these cones are non-empty, and the intersections
∨1

i ∩∨2
i are non-empty as well – as both cones contain the direction

d⊥, counterclockwise perpendicular to d. These cones and this fact
play a central role in our injectivity condition stated in the follow-
ing. For this, let ∆

0
i j = pi( j+1)− pi j and ∆

1
i j = p(i+1) j− pi j (i, j≥ 0

and i + j ≤ n− 1) denote vectors of the control net of a Bézier
triangle.

Theorem 1 (Rational Injectivity Condition) If, for a given guard-
able rational curve (pi) with weights (wi), we choose the control
points of a rational Bézier triangle ppp such that

1. p0i = pi and w0i = wi,
2. wi j = 1, i≥ 1,
3. p1i ∈ ∨1

i ∩∨2
i ,

4. ∆
0
i j ∥ d, i≥ 1,

5. ∆
1
i j ∥ ∆

1
00, i≥ 1.

then ppp conforms to the curve and is injective. a ∥ b here means there
is an s > 0 such that a = sb.

Conformance is straightforward due to Condition 1 (making the
first row of control points and weights coincide with the curve’s),
and injectivity is essentially ensured by carefully placing the sec-
ond row of control points inside the cone intersections (Figure 3
right). The further rows can easily be placed such that the latter two
conditions are satisfied (see the red and blue control net vectors on
the rows i≥ 1 in Figure 3 right).

To prove this theorem, we interpret rational Bézier triangle ppp as
a composition of two maps:

The first of these two maps is ppp∗ : → R3 with ppp∗(u,v) =
∑i+ j≤n p∗i jB

n
i j(u,v), p∗i j ∈ R3 (the homogeneous version of the con-

trol points pi j). Technically, this is a polynomial triangle in R3.

The second map is hhh : R3→ R2 with hhh(x,y,w) = (x/w, y/w). This
is the central projection onto the plane w = 1, followed by omitting
the third coordinate.

Observe that ppp = hhh◦ ppp∗. Our approach is to, rather than consid-
ering the injectivity of the rational triangle map as a whole, show
that ppp∗ is injective (on the triangular domain ) and hhh is injective
on ppp∗( ), as long as the conditions from Theorem 1 are satisfied.
Together, this implies the injectivity of the composed map.

Injectivity of First Map

We will assume o = 0. This is without loss of generality: due to
the affine equivariance of Bézier constructions, translations do not
affect differential properties like injectivity. In the following we de-
note by (v∗i ) the homogeneous control vectors corresponding to the
homogeneous control points (p∗i ) of the curve.

Condition 1 of the theorem yields p∗0i = p∗i (0 ≤ i ≤ n) for the
first row of the control net.

Let E i denote the (infinite) extrusion of the red cone∨2
i along the

third dimension. Note that p∗0i, like p′i , lies on the apex line of this
extruded cone, because p∗0i and p′i agree in the first two coordinates.
When we talk about containment of vectors (rather than points) in
such a cone in the following, we can drop the index i, as these cones
only differ by translation.

Condition 3 implies p1i ∈ ∨2
i , which implies (due to w1i = 1 by

Condition 2) p∗1i ∈ E i. Note that this implies that the vector ∆
1∗
i0 =

p∗1i − p∗0i is contained in E. In Figure 4 this is illustrated for the
case i = 1. Note that we use the shorthands qi = p1i and q∗i = p∗1i
to refer to the second row of control points.

Figure 4: Perspective side view and orthographic top view of the
(polynomial) 3D Bézier triangle ppp∗. The red cone ∨2

1 (a cross
section of extruded cone E1) is shown. Notice that the vector
∆

1∗
10 = q∗1 − p∗1 is contained in the extruded cone E1, therefore its

image in the orthographic view is contained in the cone ∨2
1.

© 2022 The Author(s)
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Condition 5 together with the constancy of weights due to Con-
dition 2 then implies that not only ∆

1∗
i0 but actually all vectors ∆

1∗
i j

are contained in E.

Condition 4 together with the constancy of weights due to Con-
dition 2 asserts that all vectors ∆

0∗
i j for i≥ 1 are contained in E, an

extruded cone such that the disjoint union E∪E forms a halfspace.
The monotonicity of the auxiliary control polygon (p′i) together
with the definition of red cones ∨2 implies that this is also the case
for ∆

0∗
i j with i = 0 (i.e. the curve’s homogeneous control vectors).

Based on these observations, the following lemma can be shown:

Lemma 4 ppp∗(u,v) is injective on the domain .

Proof The partial derivatives of the map ppp∗(u,v) are ∂/∂uppp∗ =
n∑∆

0∗
i j Bn−1

i j and ∂/∂vppp∗ = n∑∆
1∗
i j Bn−1

i j [Far86]. From the above

we know that the vectors ∆
0
i j are contained in E, while the vec-

tors ∆
1
i j are contained in E. Therefore the two partial derivatives,

being convex combinations thereof, are contained in E and E, re-
spectively, as well. As E and E are convex (apex angle < π), these
convex combinations do not vanish. Due to the disjointness of E
and E, and their containment in a common halfspace, the partial
derivatives are not parallel. Thus, based on (4), ppp∗ is injective.

Injectivity of Second Map

In order to prove the injectivity of hhh on ppp∗( ), we employ the
following lemma.

Lemma 5 For a Bézier triangle T ⊂ R3 with control net N , if
hhh(N ) forms a simple triangulation (without degenerate or overlap-
ping triangles) then hhh(T ) is injective.

Proof If hhh(N ) is a simple triangulation this implies that any ray
emitted from the origin intersects N in at most one point. Due to
the variation diminishing property of Bézier triangles [Far86], any
such ray does therefore not intersect T in more than one point. As
hhh is a projection along these rays, this concludes the proof.

The fact that the conditions of Theorem 1 imply a simple trian-
gulation under hhh can then be used to finally show the following:

Lemma 6 If the map ppp∗ is defined by a triangle ppp that satisfies the
five conditions of Theorem 1, then hhh is injective on ppp∗( ).

Proof The conditions of Theorem 1 imply that the control points
pi j = hhh(p∗i j) form a simple triangulation: the first row of triangles
is non-degenerate and non-inverted due to Condition 3 (p1i ∈ ∨1

i )
(see Figure 5). Due to Conditions 4 and 5, the remaining rows are
non-degenerate and non-inverted. Therefore, the entire triangula-
tion hhh(N ) is simple, such that Lemma 5 applies.

3.3. Construction

We now describe one concrete way to place, in accordance with
Theorem 1, the control points and weights defining a rational
Bézier triangle conforming to a given guardable rational curve.

The essential degrees of freedom are the placement of points qi
in∨1

i ∩∨2
i , as these then imply the remaining rows via Conditions 4

and 5. To yield a particularly simple construction, we here consider
the placement of these points in the common intersection region of
all cones,

⋂
i(∨1

i ∩∨2
i ).

1. Intersection of cones Let ∨1 =
⋂

i∨1
i denote the cone that is the

intersection of all blue cones, and ∨2 =
⋂

i∨2
i the intersection of

all red cones, as illustrated in Figure 6.
2. Placing the tip control point. Now, to define the tip pn0 of the

conforming element, we first compute point p as the lowest point
of intersection region ∨1 ∩∨2 with respect to direction d⊥, as
shown in Figure 6. Then, we set pn0 = p+(w2/ŵ)µd⊥, where
w is the width of the curve (the length of the segment p0 pn), ŵ is
the initial width before any bisections were applied to the curve,
and µ > 0 is a parameter. This specific choice in particular of the
factor w2, adopted from [MC20], is important for the termination
argument in Sec. 4.1. From the fact that the cones ∨1 and ∨2

contain direction d⊥ by construction, we conclude that pn0 is
contained in ∨1∩∨2. The placement of pn0 immediately defines
the two straight sides of the triangular element.

3. Placing the remaining control points. In order to place the re-
maining points of the control net, we first locate a line parallel
to d which intersects both straight sides of the triangle inside
the region ∨1 ∩∨2 (see Figure 6). For this purpose, we inter-
sect the boundaries of ∨1 ∩∨2 with the straight sides and let
the line run through the highest intersection point (with respect
to d⊥). The line’s intersections with the straight sides define q0
and qn−1. The remaining points can be placed by arbitrary (but
ordered) placement of the other qi in between, arbitrary (but or-
dered) placement of the other pi0 along the left straight edge,
and then intersecting two families of parallel lines through these
control points to yield the rest.

In Appendix A we describe two more elaborate alternatives (that
can be used as drop-in replacements in the main mesh generation
algorithm of Sec. 4). One employs a placement in the individual
cone intersections, the other furthermore employs individual visi-
bility cones generalizing ∨1

i , so as to obtain even more flexibility.
This allows constructing elements that are less tall (and less dis-
torted) and therefore enables simpler output meshes on average.

4. Meshing Algorithm

Equipped with the construction of conforming injective rational el-
ements, we can now formulate the overall meshing algorithm. As
we have ensured that the constructed elements have a number of
specific properties, we can closely follow the overall Bézier Guard-
ing algorithm, substituting our rational guardability condition and
element construction.
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Figure 5: The first row of control net triangles is non-degenerate
and non-inverted due to containment of the second row of control
points in cones ∨1

i .
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Figure 6: Placement of the control net for a conforming rational
Bézier triangle, using the simple placement strategy (Sec. 3.3).

Input Assumptions The input is a set of rational Bézier curves
in 2D, ccci : [0,1] → R2, which satisfies the following condi-
tions: (1) they are regular, i.e. their derivatives are non-vanishing,
∥ccc′i(t)∥ ≠ 0 for any t ∈ [0,1], (2) they do not intersect except per-
haps at their endpoints, and (3) they do not form infinitely sharp
corners with zero-angles. Reasons for these requirements are anal-
ogous to those discussed in [MC20].

Algorithm For such a set of input curves, the algorithm proceeds
as follows to generate a valid mesh that conforms to the input.

1. As long as there is a non-guardable rational curve, bisect it (at
t = 1

2 ). Once guardable, construct a conforming element using
the presented construction.

2. As long as any two triangular elements overlap, bisect the curve
with the tallest element and reconstruct the conforming elements
for the two subcurves.

3. Triangulate the remaining space (or a bounding box), consider-
ing the conforming elements as holes.

4. Equip the generated straight-edge elements with a suitable geo-
metric map conforming to neighboring elements (i.e. with shared
control points and weights).

For the last step, we employ the same placement rules for control
points like the original Bézier Guarding method, with the difference
that we additionally set all weights to 1. Note that the curved ele-
ments constructed following Sec. 3.3 have unit weights along their
edges as well, so this choice is compatible.

4.1. Termination of the Algorithm

The following lemma supports the termination of the algorithm.

Lemma 7 Under repeated bisection, inner angles ∠pn0 p0 pn and
∠pn0 pn p0 of elements constructed after Sec. 3.3 converge to zero.

Proof Under subdivision, the control polygon of a regular ratio-
nal curve converges to the curve in a pointwise manner and the
control vectors of a subcurve converge to all be parallel [PK94,
LPR12, MG01]. Hence, the blue and red cones converge towards
an apex angle of π. As additionally apices of red cones converge to

the control points, thus to the curve, by Lemma 2, the point p con-
structed in Sec. 3.3 (always well-defined because subcurves remain
guardable by Lemma 3) converges to the curve. At the same time,
the width w of a curve converges to 0. Hence the tip control point
pn0 = p+ (w2/ŵ)µd⊥ converges to p, thus to the curve as well.
As the convergence of the tip control point to p is asymptotically
faster (quadratic in w) than the convergence of the curve width to 0
(linear in w), the inner angles converge to 0.

This shows that Lemma 3.7 from [MC20] applies to our con-
struction of rational triangular elements as well. As a consequence,
our construction satisfies the requirements for their proof of termi-
nation, in particular Proposition 3.8.

5. Results

In the following we demonstrate the construction of single elements
as well as the generation of entire meshes on various examples.

Figure 7 illustrates the effect of the choice of point o. Note that
the question of guardability as well as the shape of the cones ∨2

i

Figure 7: Effect of weights and choice of point o on the element
construction. Shown is a curve with control points (0,0), (1,1),
(2,−1), (3,0). From left to right: point o is chosen at p0, at dis-
tance w (curve width) below the midpoint, at distance 1

2 w below the
midpoint, at the midpoint 1

2 (p0 + pn). From top to bottom: weights
are (1,1,1,1), (1,0.5,0.5,1), (1,2,2,1), (1,1,0.5,1), (1,1,2,1).
Color indicates local MIPS distortion, with white indicating isome-
try. For the two instances where two triangular elements are shown
on the curve, it had to be subdivided for guardability.
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is relative to this choice. This means, different choices will lead
to differently sized triangle elements and different numbers of bi-
sections. We find that the simple choice of o = 1

2 (p0 + pn) leads
to small elements and a low number of bisections on average,
and therefore generally use this fixed choice in all other experi-
ments. Other simple options like o = p0 or o below the midpoint
1
2 (p0 + pn) at various distances (as used in Figures 3 and 6 for less
cluttered illustration) proved to behave worse.

Figure 8 illustrates the proper handling of curves forming (non-
polynomial) circular and elliptical arcs by our algorithm. Also note
the effect of the parameter µ: a larger value results in taller elements
which, while having less parametric distortion, may require more
curve bisections to generate disjoint elements. We use µ = 0.01 in
all other experiments. Figure 9 shows our output on a Fibonacci
spiral as well as on a complex mechanical part.

Figure 10 illustrates an extreme scenario. It consists of a se-
quence of seven rational curves of degree 3 with the weights of
inner control points ranging from 0.001 (left curve) to 1000 (right
curve). Smaller weights pull auxiliary points p′ close to the curve,
implying large cone intersections, enabling small elements. By con-
trast, larger weights push them far away, implying steeper extreme
slopes and taller elements, requiring more curve bisections.

We furthermore applied our algorithm to examples from the
ABCD dataset of [MC20], adapted to our setting by randomly as-
signing weights in range (0.1,10) to the control points, so as to turn
the originally polynomial curves into rational curves, of degree 3.
Figure 11 shows the output (with up to 5K rational triangles) on
one such example from each of the four dataset categories. Our im-
plementation (on a commodity laptop) has the following average
run time, start to end of the algorithm, for the input instances from
the four dataset categories:

A B C D
Steps 1+2 (rational elements) 3.2s 3.8s 1.3s 0.35s
Steps 3+4 (linear elements) 0.3s 0.4s 0.1s 0.03s

Output Quality Note that our method focuses on the binary crite-
ria conformance and validity: It guarantees that there is no approx-
imation error and that every element in the resulting mesh is valid.
It does not guarantee any controllable lower bounds on continuous

Figure 8: Meshing of a region enclosed by eight rational curves
(degree 2) forming a circle and an ellipse for µ= 0.01 (left) and µ=
0.1 (right); generally, a larger µ generates taller elements which
require more subdivision to ensure that the elements are disjoint.

Figure 9: Results on a Fibonacci spiral and a complex practical
configuration. The Fibonacci spiral on the left is made of 13 ratio-
nal curves of degree 2. The mechanical gear consists of more than
500 rational curves, running very close to each other. This is not
an issue for the algorithm, due to its solid foundation.

mesh quality measures beyond that, e.g. regarding angles or geo-
metric map distortion [EE20]; for instance in the complex example
of Figure 9 right, the popular scaled Jacobian measure goes down
to around 10−5. One may adapt quality-improving remeshing tech-
niques to the rational case, for which our output can serve as valid
starting point, just as demonstrated for the original Bézier Guarding
method; conservative validity checks [EE20] can be used to ensure
the preservation of validity throughout. Figure 1 right shows a pre-
liminary demonstration; in-depth exploration of this route is a topic
for future work.

6. Conclusion and Future Work

We have introduced the first method to generate rational triangle
meshes for planar domains, bounded and constrained by rational
curves such as general NURBS (see also Figure 12), such that these
meshes are valid and conform to the curves by construction. The
key contribution is a construction of injective conforming individ-
ual elements, with all the specific properties required to incorpo-
rate it into the Bézier Guarding approach, that previously only sup-
ported conformance to polynomial curves.

For future work we imagine the exploration of a targeted ex-
ploitation of the degrees of freedom that the construction offers. For
instance, for simplicity we have used a fixed choice of the point o,

Figure 10: Extreme cases. The elements resulting from our method
are conforming and valid by construction, regardless of weights.
Shown in red is a sequence of seven consecutive curves with iden-
tical control polygon each (zig-zag shape) but varying weights as-
signed to their inner control points, from 10−3 (left) to 103 (right).
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Figure 11: Sample results for instances from the ABCD stress test
dataset [MC20], made rational by assigning random weights.

while its variation could lead to smaller elements, to faster conver-
gence, to more parsimonious results, and/or to geometric maps of
lower distortion. Similarly, the apex point could be flexibly chosen
within an entire region rather than at a fixed point.

While the polynomial Bézier Guarding approach was shown to
be implementable exclusively using rational arithmetic (enabling
exact computation, free of rounding error), weight normalization in
the rational case involves roots. While there are exact computation
techniques supporting roots, these likely come with a significant
performance overhead.

An extension of the overall approach to the three-dimensional
setting (e.g. using tetrahedral meshes) is another worthwhile re-
search direction, which comes with a wealth of additional chal-
lenges not present in the two-dimensional scenario.
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Appendix A: Alternative Element Constructions

The control point placement strategy from Sec. 3.3 is a particularly
simple one. In the following we describe a more flexible construc-
tion that exploits the individual cone intersections ∨1

i ∩∨2
i , as well

as a further generalization, which uses larger visibility cones ∨3
i in

HHKK NNOO
FF11TT
UU

Figure 13: The red and blue cones vi induce segments s1
i (t) and

s2
i (t) on the line L(t). Their intersections, kernel segments, are in-

dicated in black. All segments are well-ordered within their class.

ff

Figure 14: The chain of control vectors connecting pi to p j must
have a vector with slope greater than the boundaries’.

place of guarding cones∨1
i . Both enable the construction of less tall

triangle elements, with efficiency benefits for the overall algorithm.

We assume that a (sub)curve {pi,wi} is given that is rational-
guardable with respect to a direction d, and define:

• Let L(t) a line parallel to d, with signed distance t to p0 (increas-
ing in direction d⊺). On this line (for a suitable t) the second row
of the control net, the points {qi}, will be placed.

• Let s1
i (t) = [l1

i (t),r
1
i (t)] = ∨1

i ∩L(t) denote the segment of L(t)
inside the cone ∨1

i . Analogously, the segments s2
i are defined

based on cones ∨2
i . Their intersections ki(t) = [l′i (t),r

′
i (t)] =

s1
i (t)∩ s2

i (t) we call kernel segments. See Figure 13.
• Let tmin denote the smallest value of t such that ki(t) ̸=∅ for all

0 ≤ i ≤ n− 1. As the direction d⊺ is contained in both types of
cones, the segments ki(t) grow strictly monotonically with t.

Proposition 1 For any fixed value t > tmin, the segments s1
i (t) are

well-ordered along L, i.e. l1
i (t) ≤ l1

i+1(t) and r1
i (t) ≤ r1

i+1(t). The
same holds for segments s2

i (t) and kernel segments ki(t).

Proof Suppose i < j but l1
i (t)> l1

j (t) (see Figure 14). Then, the
chain of control vectors from pi to p j must contain a vector v for
which the value d⊺v/||v|| is smaller than the value for v−, which
contradicts the definition of v−. The argument for the right end-
points r1

i (t) is similar. Analogously, based on the monotonicity of
the auxiliary control polygon {p′i} with respect to direction d, the
well-orderedness of the segments s2

i (t) for t > tmin is shown. The
kernel segments ki(t) are well-ordered because they are pairwise
intersections of these well-ordered segments.

This well-orderedness implies that if one chooses a placement of
a subset of the points {qi} on L such that qi ∈ ki, this partial place-
ment can always be completed, i.e. there always is room to place
each remaining point qi such that it lies in ki and between qi−1 and
qi+1 along L. We exploit this property in the following: We first fix
the outermost points q0 and qn−1 (which together with points p0
and pn define the straight edges of the element), and know that the
remaining control points of the second row can always be placed in
between in accordance with the requirements of Theorem 1.
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Figure 15: Constructing the minimum height triangle based on individual cone pair intersections. Shown are the three possible height-
minimal choices of t: near tmin (left), at the kink b of the region ∨1

n−1∩∨2
n−1 (green, center), and near tmax (right).

Using Individual Cone Pair Intersections

This element construction strategy considers the placement of
points qi inside the individual pairs of red and blue cones, i.e.
qi ∈ ∨1

i ∩∨2
i . The conceptual idea is to, in order to yield an el-

ement of low height, place q0 rightmost in its feasible space, i.e.
at the end point r′0(t) of kernel segment k0(t), and qn−1 leftmost,
i.e. at the start point l′n−1(t) of kernel segment kn−1(t). These two
points define the two straight sides of the triangle element, there-
fore they determine the position of the tip vertex pn0 and therefore
the overall element height. See Figure 15 left for an illustration.

Our degree of freedom is the choice of t > tmin. We first com-
pute tmin by computing the lowest (relative to direction d⊺) point
mi of each region ∨1

i ∩∨2
i . The boundary of such a region is an (un-

bounded) polygon, with at most three vertices; mi is one of these
three points. Let M denote the highest of these points mi; this de-
termines tmin such that line L(tmin) runs through M (Figure 15 left).

Now let q0 and qn−1 be the innermost points of the segments
k0(tmin) and kn−1(tmin), respectively, shifted by µ(w2/ŵ)d⊺ (sim-
ilar to the shift performed in Sec. 3.3) to ensure they lie inside the
cones, not on their boundary. Notice that they then lie on L(t) with
t = tmin +µ(w2/ŵ)> tmin as required.

After defining q0 and qn−1 in this way, we position the remain-
ing {qi} by the following assignment (starting from i = 1), which
due to well-orderedness of the kernel segments leads to properly
ordered points: qi ← 1

2
(
max{qi−1, l

′
i}+min{qn−1,r

′
i}
)
. Finally,

the rest of the control net is completed just as in Sec. 3.3 step 3.

Remark: Interestingly, in some cases performing the above con-
struction not based on tmin but starting from a larger t can lead to
an even less tall element. This is due to the fact that, while ∨1

0∩∨2
0

(which induces k0(t)) is simply a cone rooted at p0 = p′0, the region
∨1

n−1 ∩∨2
n−1 has a more complex shape, bounded by up to four

linear pieces. Depending on their slope relative to the element, in-
creasing t can lead to the kernel segment kn−1(t) growing inwards
at a rate that implies a smaller element. Due to the piecewise linear-
ity of the cone intersection region, however, the optimal t can only
lie at a kink of the region boundary (as illustrated in Figure 15 cen-
ter), and we may not choose a t ≥ tmax, which is where k0(t) and
kn−1(t) start overlapping (Figure 15 right), invalidating the con-
struction. This small number of options can easily be checked to
determine the one inducing the smallest element.

Using Visibility Cones

For even larger placement flexibility, we can actually replace the
cones ∨1

i by larger visibility cones ∨̌1
i ⊇ ∨1

i . Visibility cone ∨̌1
i

contains all points r in the plane that can see the (oriented) control
segment pi pi+1, i.e. such that (pi, pi+1,r) is a positively oriented
triangle whose interior does not intersect the control polygon. Let
š1
i (t) denote the visibility segment L(t)∩∨̌1

i , i.e. any point p∈ š1
i (t)

forms, with pi and pi+1, such a proper triangle.

The important observation is that placement of the second-row
control points qi in the larger segment š1

i (t) (if ordered properly)
still ensures a simple triangulation hhh(N ) (as required by Lemma 5);
containment in s1

i (t), like we ensured before, is not a necessary
requirement for this.

Therefore, we can use the larger intersection segments
š1
i (t)∩ s2

i (t) = [l̄i(t) r̄i(t)] rather than the above kernel segments.
Note, however, that the well-ordering property does not generally
hold for these segments. We therefore define trimmed segments
ǩi(t), by replacing bounds (starting from i = 0) as follows:

l̄i(t)←max
j≤i
{l̄ j(t)}, r̄i(t)←min

i≤ j
{r̄ j(t)}.

Note that this is equivalent to:

l̄i(t) = max
j≤i
{ľ 1

j (t), l
2
j (t)}, r̄i(t) = min

i≤ j
{ř1

j (t),r
2
j (t)}.

These trimmed segments, which still are supersets of the kernel
segments ki(t), are well-ordered by construction, and l̄i(t) mono-
tonically decreases with t, r̄i(t) monotonically increases with t. We
can therefore apply the same construction as before, just exchang-
ing ki(t) for ǩi(t) = [l̄i(t) r̄i(t)]. Some added complexity is due to
the fact that l̄i(t) and r̄i(t) are piecewise linear functions with up
to n linear pieces (because ľ 1

j , ř 1
j , l2

j , r2
j are linear), whereas the

bounds of ki(t) have only one or two linear pieces (like the bold
green left bound of kn−1 in Figure 15). This is relevant because

• for the computation of the points mi (to determine M and tmin),
these two piecewise linear functions need to be intersected;

• for the determination of the height-optimal t > tmin, the kinks of
r̄0(t) and l̄n−1(t) need to be examined (which now can be more
than just one).

It can be shown that, at least for a choice of d parallel to p0 pn and
sufficiently small µ), the minimum element height is assumed when
L(t) runs through one of these kinks.
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