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Abstract

The parametrization of triangle meshes, in particular by means of computing a map onto the plane, is a key operation in computer
graphics. Typically, a piecewise linear setting is assumed, i.e., the map is linear per triangle. We present a method for the efficient
computation and optimization of piecewise nonlinear parametrizations, with higher-order polynomial maps per triangle. We describe
how recent advances in piecewise linear parametrization, in particular efficient second-order optimization based on majorization, as
well as practically important constraints, such as local injectivity, global injectivity, and seamlessness, can be generalized to this
higher-order regime. Not surprisingly, parametrizations of higher quality, i.e., lower distortion, can be obtained that way, as we
demonstrate on a variety of examples.

Keywords: Bézier triangles, curved meshes, Hessian majorization.

Figure 1: Top: standard piecewise linear parametrization of a triangle mesh. Bot-
tom: piecewise cubic parametrization, computed using our method. Both have
been optimized for low distortion in terms of the symmetric Dirichlet energy.
Using a higher-order parametrization, lower distortion (here by 16%, also see the
heat map insets, visualizing the pointwise mapping distortion) as well as visually
higher quality is achieved. The visual difference is particularly clear here because
the underlying triangle mesh is quite coarse (1.5K triangles), but also for finer
versions the effect can be observed (blue insets on the right, 11.2K triangles).

1. Introduction

An essential operation in computer graphics and geometry pro-
cessing applications is the parametrization of discrete surfaces,
in particular by means of mapping a triangle mesh onto a pla-
nar domain. Prominent use cases are remeshing and textur-
ing. Such parametrizations are most commonly computed, repre-
sented, and processed in a piecewise linear manner, with a linear
(or affine) map per triangle. By contrast, we describe a method to
efficiently generate and optimize low-distortion parametrizations
using piecewise nonlinear, higher-order mapping functions.
The increased flexibility provided by this higher-order polyno-
mial representation enables parametrizations of lower distortion
and higher visual quality, as demonstrated in Fig. 1. The use of
higher-order basis functions on unstructured simplicial meshes
has been investigated for a long time [1], and advantages have
been demonstrated in various contexts such as simulation [2] or
deformation [3] before. We focus here for the first time on the
question how and to what extent the problem of injective surface
parametrization can benefit in terms of reduced parametric dis-
tortion – a key aspect in this domain. This will help estimating
whether the benefit is worth the added cost in concrete use cases.
Our method has relations to and shares some technical aspects
with algorithms for the generation or optimization of curved pla-
nar meshes, which are of interest in the field of finite element
computations. At the same time, it has novel features and details,
which are of particular relevance in the parametrization context
– but may benefit the field of curved mesh generation as well.
Concretely, in this paper we concisely describe how to:

• practically evaluate popular distortion objectives in the
higher-order setting – which, due to the Jacobian not being
constant per triangle, requires additional effort;

• apply the concept of composite majorization [4] in this set-
ting, enabling efficient second-order optimization using the
distortion objective’s gradient and Hessian;

• ensure local injectivity of the parametrization – which in the

c© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. The definitive version appeared in Computer-Aided Design, vol. 127, DOI: 10.1016/j.cad.2020.102862

https://doi.org/10.1016/j.cad.2020.102862


nonlinear setting is a per-point, not a per-triangle property –
using an improved injectivity condition evaluation;

• ensure, optionally, global injectivity (or bijectivity) by
means of a nonlinear version of an ambient space triangula-
tion [5, 6];

• compute global higher-order parametrizations with cone
singularities and seamless transitions, as these are important
for purposes such as quadrilateral remeshing;

• modify meshes by means of edge flips for purposes of mesh
optimization while preserving the validity of an underlying
higher-order parametrization.

2. Related Work

Many of the underlying techniques we make use of have been
proposed and employed before in other contexts, e.g., in piece-
wise linear parametrization or in higher-order mesh generation,
as reviewed below. We adapt, improve, specialize, or generalize
these to our problem setting, suitably combine them to form an
efficient method, and spell out the necessary details specific to
the parametrization problem in a self-contained manner.

2.1. Linear Parametrization

Being an important tool in many areas of computer graphics, the
literature on computing, optimizing, and using piecewise linear
parametrizations of triangle meshes is vast [7, 8]. Recent results
in this field concern advanced aspects, like support for singular-
ities and cuts to enable global parametrization of topologically
non-trivial surfaces [9, 10, 11, 12, 13, 14, 15, 16], control over
local or global injectivity [17, 18, 19, 5], and means to speed-
up the optimization, using regularizers, preconditioners, proxies,
etc. [20, 21, 22, 23, 4, 24]. We adopt some of the ideas developed
in this linear setting and apply them in the higher-order case.

2.2. Nonlinear Parametrization

The use of piecewise nonlinear mapping for triangle meshes is
less common, in particular when it comes to global parametriza-
tion. In the context of procedural texturing, nonlinear func-
tions are sometimes employed locally, e.g. in [25]. In the con-
text of subdivision, [26] mention the application of subdivision
schemes to texture coordinates, effectively leading to nonlinear
texture mapping functions. Later, generation and optimization of
subdivision-based maps was considered [27, 28]. It remains an
open question how aspects of injectivity or bijectivity could be
addressed in this subdivision context.

2.3. Curved Mesh Generation

The image of a (straight-edge) triangle mesh under a nonlinear
parametrization is a planar mesh with curved edges in parameter
space. Planar meshes with curved edges have been of interest for
simulation purposes since their proposal in the 1960s [1]. The
most common approach for the generation of such curved meshes
is the a posteriori curving of initially generated linear, straight-
edge meshes, as discussed in [29]. This is related to the problem
at hand because the resulting deformation is a higher-order map,
effectively parameterizing the initial mesh in a specific way.
A large number of methods for this purpose of triangular (or
tetrahedral) mesh curving have been described. Some similarity

with our method in terms of a related objective is shared by those
that perform the deformation based on some measure of distor-
tion [30, 31, 32, 33, 34, 35, 36]. Others are driven by physical
analoga, e.g., elasticity models [37, 38, 39, 40, 41, 42, 43]. Close
ties of these to the above distortion minimization techniques are
discussed by [44, 45].
The main goal in this field of mesh curving is to adapt to some
smooth model boundary [46, 47]. The required deformation is
relatively small in this context, with displacements commonly
of the same order of magnitude as the sizes of the triangle el-
ements. Only for highly anisotropic meshes larger deforma-
tions can be necessary [48]. In our parametrization context, re-
quired displacements can be orders of magnitude larger, putting
significantly higher efficiency requirements on the optimization,
cf. Sec. 4.
A further difference lies in these methods typically not guaran-
teeing local injectivity of the result. While the underlying en-
ergy or model is commonly designed to promote injectivity, due
to discretization and due to local minima, guarantees commonly
cannot be given. Modification of the mesh (if permissible) can
increase the probability of success [49, 50, 47, 46, 29]. By con-
trast, we start from a locally injective initial parametrization, and
are able to optimize for low distortion while strictly preserving
this property. This is due to the difference that our goal is not to
ultimately conform to a specific model boundary, but to minimize
the distortion, as far as possible within the subspace of injective
parametrizations.
A final small difference is the relevant reference for distortion:
while mesh curving techniques target minimal distortion relative
to the initial linear mesh, we need to optimize relative to a given
surface mesh, not its initial image in the parameter plane.

2.4. Injectivity

Local Injectivity. Questions of injectivity have been of interest
for higher-order maps of triangles since the early days of nonlin-
ear finite element analysis [51]. In contrast to linear maps, where
the question of local injectivity (i.e., positivity of the map Jaco-
bian’s determinant) reduces to a simple orientation check of three
points, closed-form expressions to answer this for higher-order
maps are not available. Various sufficient or necessary conditions
have been proposed and employed [52, 29, 53, 54, 36, 55, 56].
We discuss these in more detail in Sec. 5.
Many of the above curved mesh generation techniques strive (ex-
plicitly or implicitly) to repair non-injective configurations, but
providing guarantees of success is an extremely involved en-
deavor. When an injective initial configuration is available, an
alternative approach is to strictly remain in an injective state dur-
ing optimization of the parametrization. To this end commonly
barrier terms are included (e.g. inverse spline [57] or log barriers
[58, 30]) and explicit injectivity violation checks are performed
during a line search for valid update steps [57, 18, 19]. In our
method, we combine higher-order injectivity tests with this prin-
ciple of explicit violation prevention, cf. Sec. 5.

Figure 2: Illustration of a linear (left) and a cubic (right) exemplary parametriza-
tion of a single triangle, visualized using a mapped texture.
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Global Injectivity. When a strict one-to-one mapping is re-
quired, e.g. for texturing applications, global injectivity of the
parametrization is relevant. When starting from a globally bijec-
tive initial state, a violation of this property during optimization
is necessarily preceded by a collision of the image’s boundary
in parameter space. Hence, classical collision detection and pre-
vention techniques can be employed to preserve global injectivity
[59, 60].
Spatial partitioning data structures are commonly employed in
this context to speedup interference queries. An instance of this
is a triangulation of the ambient space surrounding an object
[61], in our case the mesh’s image in parameter space [5, 6].
By deforming this triangulation with the mesh’s image during
optimization, interferences imply flipped triangles in this trian-
gulation, making detection easy.
This technique cannot easily be applied in our higher-order set-
ting, as the ambient triangulation problem turns into an involved
constrained curved meshing problem. We instead employ a local
remeshing strategy for the higher-order ambient mesh. Related
curved mesh modifications have been employed, e.g., by [50]
and [62]; we employ improved variants that take injectivity of
the map into account, cf. Sec. 6.

3. Higher-Order Map

Let t be a triangle in R3 with barycentric coordinates ξ =
(ξ0, ξ1, 1 − ξ0 − ξ1); we will sometimes use ξ2 as a shorthand
for 1 − ξ0 − ξ1. A map f : t → R2 of polynomial degree n over
this domain in Bernstein-Bézier form [63] is defined as

f (ξ) =

(
u(ξ)
v(ξ)

)
=

∑
i+ j+k=n

(
ui jk

vi jk

)
Bn

i jk(ξ), (1)

with n(n+1)/2 coefficients (control points) ci jk = (ui jk, vi jk) ∈ R2

and triangular Bernstein basis functions

Bn
i jk(ξ) =

n!
i! j!k!

ξi
0ξ

j
1ξ

k
2. (2)

In Fig. 2 such triangular maps are illustrated for the linear case,
n = 1, and the cubic case, n = 3. The main objective of the
method presented herein is the determination of coefficients ci jk
for each triangle of a mesh such that the resulting combined map
has the desired properties, such as low parametric distortion and
injectivity.

3.1. Derivatives

To obtain the Jacobian of f , it is convenient to consider the map f
as being composed of two maps, f = φ ◦ ψ−1, via a right triangle
with unit length legs, as illustrated in Fig. 3. The map ψ : T → t
is a simple affine map, while φ : T → R2 is a Bézier map of
degree n.
The Jacobian of the Bézier map φ is easily built from the partial
derivatives by ξ0 and ξ1:

Jφ(ξ) =

 ∂u
∂ξ0

(ξ) ∂u
∂ξ1

(ξ)
∂v
∂ξ0

(ξ) ∂v
∂ξ1

(ξ)

 , (3)

J
−1
ψ Jφ

(0,1)

(0,0)e0

e1
ξ1

ξ0
(1,0)

t T
(u,v)n00(u,v)0n0

(u,v)00n

e⊥

Figure 3: The Jacobian J f of the mapping function f (from triangle t into parame-
ter spaceR2) can be computed as a composition of two Jacobians via intermediate
right unit leg triangle T .

where the partial derivatives [63] are given by

∂u
∂ξ0

(ξ) = n
∑

i+ j+k=n−1

(u(i+1) jk − ui j(k+1))Bn−1
i jk (ξ),

∂u
∂ξ1

(ξ) = n
∑

i+ j+k=n−1

(ui( j+1)k − ui j(k+1))Bn−1
i jk (ξ).

(4)

The (constant) Jacobian of the affine map ψ : T → t is easily
computed from the edge vectors e0, e1 ∈ R

3 of triangle t as

Jψ =

[
eᵀ0 ê0 eᵀ1 ê0

0 eᵀ1 ê⊥

]
, (5)

where e⊥ = e0 × e1 × e0, and ê denotes a unit vector along e. The
columns of Jψ are just the two edge vectors relative to a local
orthonormal 2D coordinate system, as illustrated using dashed
lines in Fig. 3 left. Then

J−1
ψ =

[
j0 j1
0 j2

]
=

1
2At

[
eᵀ1 ê⊥ −eᵀ1 ê0

0 eᵀ0 ê0

]
. (6)

The Jacobian of f is then J f (ξ) = Jφ(ξ)J−1
ψ . Note that J−1

ψ is
independent of ξ, constant per triangle due to ψ being affine, and
independent of the parametrization (i.e. of the coefficients ci jk).

3.2. Continuity

Given a triangle mesh M, a parametrization of this mesh is de-
fined by a collection of triangular maps, one for each triangle,
as described above. For most applications, it is important that
these individual maps join continuously across the edges – at
least away from (potentially topologically unavoidable) cuts or
seams.
Along an edge a triangular map in Bernstein-Bézier form is ex-
clusively defined by a subset of its control points. For instance,
the (n+1) control points c0 jk determine the map restricted to edge
e1 in the example from Fig. 3. It is thus sufficient that these edge
control points coincide between adjacent triangles in order to ob-
tain a parametrization of M that is C0 continuous, as illustrated in

Figure 4: Images of two adjacent triangles under degree 3 maps with their as-
sociated control points. The edge control points (red) are shared between the
triangles, thus the combined map is C0.
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Fig. 4. In practice, to avoid redundancy, edge control points can
be shared among two triangles, and vertex control points (with
two zero indices, being edge control points for two edges of a
triangle each) shared among all triangles incident to a vertex.
We focus on the C0 setting herein. For certain applications higher
orders of parametrization continuity, i.e., smoothness, may be
of interest – but this comes with major additional challenges,
cf. Sec. 9.

3.3. Distortion

A variety of measures to quantify a parametrization’s metric dis-
tortion have been proposed. They can commonly be expressed
in terms of the Jacobian’s singular values [7]. Particularly in the
context of injective parametrization, the symmetric Dirichlet en-
ergy [19] has become popular, in part due to its barrier character-
istics, naturally preventing degeneracies during distortion-driven
optimization. We thus exemplarily focus on this important dis-
tortion measure in the following.
Let the two singular values of J f (ξ) be denoted Σ(ξ), σ(ξ). Then
the symmetric Dirichlet energy at point ξ in triangle t is

Et
S D(ξ) = Σ(ξ)2 + σ(ξ)2 + Σ(ξ)−2 + σ(ξ)−2. (7)

Integrating this pointwise measure over the entire mesh M yields
the total distortion ES D as follows:

EM
S D =

∑
t∈M

∫
t
Et

S D(ξ)dxdy. (8)

For the usual case of piecewise linear parametrization, Et
S D(ξ) is

constant over t. For higher-order cases, where this is not the case,
closed-form expressions for the integral are not available. Hence,
numerical integration using some quadrature scheme needs to be
employed – a standard approach, e.g., in higher-order FEM [64].
Let ξl, l ∈ Q = {1, . . . , k}, denote the barycentric coordinates of
some scheme’s k quadrature points, and wl the associated relative
weights. Quadrature then yields

EM
S D ≈ ĒM

S D =
∑
t∈M

At

∑
l∈Q

wlEt
S D(ξl) =

∑
(t,l)∈M×Q

AtwlEt
S D(ξl). (9)

Note that Et
S D(ξl) is not a polynomial but a rational function, such

that this quadrature is approximative in general. We discuss the
choice of quadrature scheme in Sec. 8.3.

4. Efficient Optimization

Main objective of this paper is to show how nonlinear
parametrization maps for triangle meshes can be generated and
optimized for low distortion, possibly subject to various con-
straints. The degrees of freedom are the coefficients ci jk per tri-
angle – which in the classical linear case simply are the three
vertices’ mapping coordinates (or texture coordinates) per trian-
gle – and we consider ĒM

S D as the distortion to be minimized.
This optimization objective is nonlinear, and we have a poten-
tially very large number of degrees of freedom, n(n+1) per trian-
gle of the mesh M (some shared, cf. Sec. 3.2). For efficiency, we
would like to apply Newton’s second-order optimization method.
It makes use of the objective’s Hessian. If this Hessian is not
positive semidefinite (PSD), however, the computed update di-
rections are not descent directions in general. The Hessian of
ĒM

S D is not PSD (nor that of other popular distortion measures).

4.1. Majorization
In order to obtain a well-justified Hessian proxy that is PSD, we
thus adopt in the following the majorization ideas of [4], enabling
the efficient optimization of higher-order maps using Newton’s
method. For clarity we briefly recap the core idea, and spell out
the relevant formulas adapted to our setting. One starts by de-
composing Et

S D(ξ) = h ◦ g (ξ), with

h
([

Σ

σ

])
= Σ2 + Σ−2+ σ2 + σ−2 and g(ξ) =

(
Σ(ξ)
σ(ξ)

)
. (10)

Using the following definitions, built from the entries of J f ,
cf. Eq. (3) and (6), the singular values of J f (ξ) appearing in g can
be written as Σ(ξ) = ‖α(ξ)‖ + ‖β(ξ)‖ and σ(ξ) = ‖α(ξ)‖ − ‖β(ξ)‖:

α =
1
2

 j0 ∂u
∂ξ0

+ j1 ∂v
∂ξ0

+ j2 ∂v
∂ξ1

j0 ∂v
∂ξ0
− j1 ∂u

∂ξ0
− j2 ∂u

∂ξ1

 β =
1
2

 j0 ∂u
∂ξ0
− j1 ∂v

∂ξ0
− j2 ∂v

∂ξ1

j0 ∂v
∂ξ0

+ j1 ∂u
∂ξ0

+ j2 ∂u
∂ξ1


Hence, function g can be further decomposed as g = g+ +g− with

g+ =

[
‖α‖ + ‖β‖
‖α‖

]
, g− =

[
0
−‖β‖

]
.

This leads to a convex-concave decomposition of Et
S D(ξ), where

both h and g+ are convex, while g− is concave.
The (non-PSD) Hessian of Et

S D(ξ), following the chain rule, is
given by

Ht
h◦g = ∇g>∇2h∇g + ∇h>∇2(g++ g−),

Note that the first term of this expression is PSD, but the second
is not in general. The Hessian of a tight convex majorizer can be
formulated by discarding the non-PSD components as follows:

• ∇2g+: if multiplied by a negative factor (as g+ is convex),

• ∇2g−: if multiplied by a positive factor (as g− is concave).

The Hessian Ht of the convex majorizer of Et
S D is thus given by

Ht = ∇g>∇2h∇g + (∇h)>+∇
2g+ − (∇h)>−∇

2g−, (11)

where (·)+ and (·)− are component-wise clamping functions,
clamping negative or positive values to zero, respectively.
Due to linearity, recalling Eq. (9), the Hessian HM of the corre-
sponding convex majorizer of the total energy ĒM

S D is

HM =
∑

(t,l)∈M×Q

AtwlHt(ξl). (12)

All expressions required to compute gradient and Hessian, given
control points values, are spelled out explicitly in Appendix A.

4.2. Newton Step and Line Search
Given a parametrization, defined through its control points, let c0

denote the vector of all these control points’ coordinates. Then
the update ∆c is computed according to Newton’s method as

∆c = −[HM(c0)]−1∇EM
S D(c0), (13)

where H (Eq. (11)) and the gradient are with respect to the con-
trol point coordinates. The update is then applied by setting
c1 = c0 + λ∆c, where the step size factor λ is determined using a
line search which ensures that the objective value (i.e. distortion)
decreases and, if desired, injectivity is maintained as described
in Sec. 5 (det J f > 0 and angle sum ≤ 2π conditions) and Sec. 6.
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Figure 5: Energy EM
S D (log scale) vs optimization iterations for an example case

(model G, 10K triangles), for degrees B1–B4. When optimizing with high degree
from the start, optimization may end early in bad local minima (here for B4,
dashed graph). By instead starting with degree 1 and incrementally elevating
the degree (indicated by dots) during optimization (Sec. 4.3), this is avoided and
the overall best convergence behavior is achieved (solid graph). On the right a
blow-up shows a detailed view of the behavior.

4.3. Incremental Degree Elevation

When starting the optimization from a lower order state – e.g. in
our experiments we use a piecewise linear Tutte embedding to
guarantee injectivity – the optimization process can be sped up
and be effectively regularized by incrementally elevating the de-
gree [63]. The degree n + 1 control points cn+1 equivalent to
degree n control points cn are easily computed via

cn+1
i jk =

1
n + 1

(
icn

(i−1) jk + jcn
i( j−1)k + kcn

i j(k−1)

)
.

As discussed in previous work [62], starting by optimizing a
piecewise linear function and then following up with higher-
order optimization in particular helps reducing wiggling that
higher-order polynomials are prone to, and that may lead to get-
ting stuck early in local minima – an example is illustrated in
Fig. 5. We use this simple heuristic: the degree is elevated (until
the desired degree is reached) whenever the relative decrease in
objective value due to a Newton step drops below 1%.

Remark:. For comparative analyses, it was of interest to be able
to successfully perform optimization also without incremental
degree elevation. The following proved to be a highly benefi-
cial heuristic for this case (avoiding premature convergence as
dashed in Fig. 5): If even after reducing step size λ to below 10−5

in the line search there are triangles where local injectivity would
be violated, we temporarily exclude them from the objective and
restart the line search with the recomputed update. This enabled
the successful optimization without incremental elevation for our
comparative experiments (in particular Fig. 18 and Fig. 15).

5. Local Injectivity

An important property of parametrizations, required by most ap-
plications, is local injectivity. A continuous piecewise map is
locally injective iff its Jacobian per piece is non-singular, i.e.
det J f , 0, of the same orientation, i.e. orientation preserving
(det J f > 0) or reversing (det J f < 0), and the sum of unsigned
image sector angles is ≤ 2π around every vertex [65] – though
the latter condition is not relevant for all applications. We always
assume orientation preservation in the following, i.e., for local in-
jectivity we require that over each triangle t it holds det J f (ξ) > 0
or equivalently det Jφ(ξ) > 0, for all ξ ∈ T .
The determinant det Jφ(ξ) is a polynomial of degree n̂ = 2(n−1).
For classical, piecewise linear parametrizations, we thus have

n̂ = 0, i.e. the Jacobian determinant is constant over each trian-
gle – which simplifies the situation significantly: det Jφ is easily
computed from the signed area of the triangle. Piecewise linear
parametrization optimization methods thus commonly perform a
line search for every update step, checking that this area stays
positive for every triangle [18, 19].
In the case of higher degree, the Jacobian determinant varies
over the triangle, and one needs to ensure that it is positive
everywhere, i.e. that the minimum over the triangle is positive,
minξ∈T det Jφ(ξ) > 0. Unfortunately, no closed-form expression
is available to compute this minimum. However, one can com-
pute bounds of this minimum determinant from below and from
above, allowing to potentially conclude that the map is definitely
locally injective or definitely locally non-injective, respectively:

• the lower bound L being positive is a sufficient condition for
local injectivity,

• the upper bound U (of the minimum) being positive is a
necessary condition for local injectivity.

5.1. Jacobian Determinant Bounds

Obtaining an upper bound of the minimum over T is easy:
evaluate the determinant at one or more points (ξi), then an
upper bound U of the minimum is obviously given by U =
mini det Jφ(ξi).
For a lower bound L the situation is more involved. [52, 29] pro-
pose to express the determinant in Bernstein-Bézier form. Then,
due to this form’s convex hull property [63], a lower bound of the
value range over the triangle can be read off from the minimum
of the Bernstein-Bézier coefficients. This idea was considered
by other authors as well, in [53] for arbitrary degree, in [54] for
tensor-product maps, or in [36] for tetrahedral meshes.
Recently, [55] described a particularly simple condition based on
the orientation of the sub-triangles formed by the Bézier control
net. We found it to be faster – but unfortunately, it turns out not
to be a sufficient condition, as we show in Appendix D.
To guarantee valid results, we thus make use of the convex hull
based technique. [56] elaborate, for the special case n = 3, how
the tightness of this sufficient condition can be increased arbi-
trarily by recursive domain subdivision of the Bézier control net.
Basis for this is the property of control net convergence to the
function graph under subdivision [66]. The same idea is em-
ployed by [53]; details on the subdivision strategy are not given.
In contrast to [56], who propose subdivision based on quadri-
section, we employ subdivision using repeated bisection [67],
cf. Fig. 6. The consequence is a slower rate of refinement, which
pays off because most often a very small number of subdivision
iterations is necessary. Hence, quadrisection easily leads to some

Figure 6: Illustration of bisection of a (quadratic) Bézier triangle. Indexing of the
subdivided coefficients is chosen such that the red arrows indicate the first edge
of each (sub)triangle, rooted at the (n̂, 0, 0)-corner. By this choice of indexing,
simply always splitting the first edge leads to proper division of each edge in the
course of repeated subdivision.
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unnecessary computational cost due to overrefinement. The ef-
fect is minor though, as local injectivity of the vast majority of
triangles is certified without subdivision in our experiments (see
the table in the following section).
We describe the complete algorithm in the following, using the
ideas of [52, 29] and spelling out the necessary details for our
setting, with bisection based subdivision.

5.2. Injectivity Test Algorithm

The determinant det Jφ(ξ) is a polynomial of degree n̂ = 2(n−1).
In the Bernstein basis, this polynomial reads

det Jφ(ξ) =
∑

i+ j+k=n̂

di jkBn̂
i jk(ξ),

with n̂(n̂ + 1)/2 coefficients di jk ∈ R computed as follows:

di jk =
∑
|r|=|s|

r+s=(i, j,k)

i! j!k!
n!r!s!

(∆0ur∆
1vs − ∆1ur∆

0vs),

where r = (r1, r2, r3), |r| = r1 +r2 +r3, r! = r1!r2!r3!, analogously
for s, and ∆0ur =u(r1+1)r2r3−ur1r2(r3+1), ∆1ur =ur1(r2+1)r3−ur1r2(r3+1),
and analogously for v.
Due to the convex hull property det Jφ(ξ) ≥ mini+ j+k=n̂ di jk
for any ξ ∈ T . Due to the corner interpolation property
det Jφ(1, 0, 0) = dn̂00, and analogously for the other two corners.
This leads to the following conditions for local injectivity:

Sufficient condition:. L = mini+ j+k=n̂ di jk > 0

Necessary condition:. U = min(dn̂00, d0n̂0, d00n̂) > 0

As there is a gap between these two conditions, there are Bézier
triangles for which neither the sufficient condition is satisfied,
nor the necessary condition is violated. The local injectivity sta-
tus can thus not be determined directly using these conditions.
To tighten the gap in such cases, we virtually recursively bisect
the domain T (cf. Fig. 6), re-expressing the function det Jφ(ξ)
(in Bernstein-Bézier form) over each of the subdomains using de
Casteljau’s algorithm [67], until the decision can be made: As
soon as the necessary condition is violated in any subdomain or
the sufficient condition is satisfied in each subdomain, the subdi-
vision process can be stopped and the answer returned.
To avoid issues in cases where the minimum determinant is ex-
actly or nearly zero, a maximum recursion depth needs to be set
(we use 5). If no decision can be made by then, a violation of
local injectivity is reported to stay on the conservative side. As
this merely excludes the possibility of getting extremely close to
a degenerate state during optimization, this choice is not critical.
In particular, only for a very small fraction of all local injectivity
test instances during optimization is subdivision necessary at all,
as illustrated by these statistics from the optimization of cubic
example parametrizations:

number of tests requiring subdivision depth ...
0 1 2 3 4 5+

Foot 1,142,164 3 31 55 15 4
Aircraft 563,482 53 298 93 64 80
Oni 294,618 109 22 29 29 41

The following pseudo code implements this adaptive local in-
jectivity test (in an iterative fashion, with unrolled recursion),
to be employed for each triangle in the line search described
in Sec. 4.2. The bisection operation is illustrated in Fig. 6 and
spelled out in Appendix E.

1: function IsLocally Injective({di jk})
2: queue Q.push({di jk}, 0)
3: while Q not empty do
4: {di jk}, depth← Q.pop()
5: if U({di jk}) ≤ 0 return false . non-injective
6: if L ({di jk}) ≤ 0
7: if depth = max_depth return false . undecided
8: {d+

i jk}, {d
−
i jk} ← BézierBisect({di jk})

9: Q.push({d+
i jk}, depth+1)

10: Q.push({d−i jk}, depth+1)
11: return true . injective
12: end function

6. Global Injectivity

While local injectivity of maps is the property required, e.g., by
certain mesh generation or spline construction techniques, for
other applications, e.g., texturing, global injectivity is important.
A locally injective map is globally injective (bijective) if the im-
age of the boundary is not self-intersecting [65]. When starting
optimization from an initially globally injective map, global in-
jectivity can thus be guaranteed by ensuring that no boundary
self-intersections arise, cf. Sec. 2.4.
An efficient approach in the piecewise linear setting is the use
of a triangulation S of the ambient space surrounding the image
M′ of the mesh M in the parameter plane, referred to as scaffold
mesh [5, 6]. Optimization is then performed on the combined
mesh M′ ∪ S . The idea is that a global injectivity violation of
M′ implies a local injectivity violation in M′ ∪ S in this setting.
Hence, the problem of ensuring global injectivity is reduced to
that of ensuring local injectivity – already addressed in Sec. 5.
An issue is that the scaffold needs to remain nice during opti-
mization, to not significantly restrict the solution space [6]. It is
therefore advisable to, after each Newton step, recreate S as a
constrained Delaunay triangulation (CDT) [5]. Unfortunately,
robust constrained meshing of curved domains is an intricate
problem [2] (though our recent developments [68] might help).
We avoid this problem by deviating from [5] in two ways when
adapting the principle to the higher-order setting:

1. We modify (instead of recreate) the scaffold mesh S , us-
ing Bézier edge flips, after each optimization step to keep
it in good shape. (For the linear, tetrahedral case a modifi-
cation strategy was employed by [61].) Note that the initial
scaffold mesh is easily computed as a standard straight-edge
CDT, assuming a piecewise linear initialization of M′.

2. Rather than a distortion measure relative to artificial refer-
ence elements, we employ a direct triangle shape quality
objective ES

4 for the scaffold, better suited to keep it in good
shape in the course of optimization.

6.1. Bézier Edge Flip

Following the idea of the classical flip algorithm to turn a trian-
gulation into a Delaunay triangulation [69], we flip an edge of
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Figure 7: Illustration of edge flip between (here: cubic) Bézier triangles. The
interior control points (red) are variable and need to be repositioned such that
local injectivity is preserved.

S whenever it violates the local Delaunay property in the lin-
earized version of S . In this linearized version, straight-line tri-
angles are defined by just the triangle corner control points of
S . As the (initially straight) scaffold edges empirically do not
assume high curvature during optimization, this computationally
inexpensive criterion appears to be appropriate for the purpose at
hand, though theoretical guarantees are not available.
When flipping an edge in a higher-order mesh, there are degrees
of freedom to be settled: while the outer vertex and edge con-
trol points of the two involved triangles have to be preserved to
maintain a C0 connection to the surround (cf. Sec. 3.2), the in-
terior control points (red in Fig. 7) can be chosen flexibly – but
have to be chosen such that local injectivity is preserved. This is
not always possible (with triangles of the same order), but we do
not have to flip each edge that violates the Delaunay criterion –
if valid control point values do not exist or cannot be found, the
flip is simply not performed.
We attempt to find valid control points by solving a very small lo-
cal optimization problem: variables are the interior control point
coordinates (red in Fig. 7, i.e., 2 variables for quadratic, 8 vari-
ables for cubic cases), starting point is their pre-flip state, and the
objective a positive determinant promoting energy [30, Eq. 6].
We note that in previous use cases of edge flips in higher-order
simplex settings, the question of map injectivity after the flip was
not taken into account. Examples are [62], where the inner con-
trol points are set to canonical positions, or [50], where a least-
squares fit to the pre-flip function is performed.

6.2. Scaffold Objective

While each triangle of M′ has a corresponding reference shape in
M relative to which a distortion objective can be formulated, this
is not the case for the triangles of S . Using their current state as
reference (i.e. promoting preservation of their current shape and
size) proved to be a suitable approach for a single optimization
step in the piecewise linear case (where the scaffold can be easily
recreated after each step) [5]. It, however, proved unsuitable for
maintaining a good scaffold quality over tens of iterations.
We therefore rather use a quality objective E4 for the scaffold that
promotes equilateral elements. We use as E4 a scale invariant
conformal distortion objective (referred to as MIPS [70, 71] or
Winslow functional [72, §8.2.1]) with respect to an equilateral
base element:

Et
conf = (Σ2 + σ2)/Σσ = tr(Jᵀf J f )/det(J f ). (14)

Using the convex-concave decomposition of Econf [4, Eq. 26],
this scaffold objective is easily included in the second-order op-
timization. The following pseudo-code details how the scaffold
is combinatorially and geometrically updated after each Newton
step. As in [5], the scaffold objective is included with a small fac-
tor in the global optimization; we use λ = 10−4 EM

S D/E
S
4 (using

the objective values from the previous iteration).

1: function OptimizationWithScaffold
2: while not converged do
3: M′ ∪ S ← argmin EM

S D + λES
4 // Newton optimization step

4: S ← BézierFlips(S ) // Optimize scaffold combinatorially

5: S ← argmin ES
4 , M′ fixed // Optimize scaffold geometrically

6: end while
7: end function

7. Seamlessness

A parametrization is called seamless if for each edge e, its im-
ages f1(e) and f2(e) under the two maps f1, f2 associated with the
two adjacent triangles are related by a translation plus rotation by
some integer multiple of π/2 [12, 73]. Note that this is a weaker
requirement than C0 continuity (which requires an identity re-
lation), cf. Sec. 3.2. This enables the global parametrization of
surfaces with arbitrary topology.
To enable the representation of seamless parametrizations with
higher-order per-triangle maps, control points simply must not
be shared (cf. Sec. 3.2) across those edges where one requires a
non-identity rotation (commonly referred to as cut edges).
Let c0, . . . , cn be the edge control points along a common cut
edge e in adjacent triangle t1, and c′0, . . . , c

′
n the control points

(numbered in the same direction) along this edge in the other
adjacent triangle t2, as illustrated in Fig. 8. As the images f1(e)
and f2(e) are fully determined by these edge control points, the
seamlessness condition can be expressed as

(ci − ci+1) = Rkπ/2(c′i − c′i+1), ∀0 ≤ i < n, (15)

where Rkπ/2 is a (counterclockwise) rotation by angle kπ/2, with
k ∈ Z. Note that the translational component conveniently van-
ishes when expressing the condition in this differential manner.

7.1. Constraint Incorporation

In the context of piecewise linear parametrization, several pre-
vious works have included seamlessness constraints in a soft,
penalty based manner [4, 18]. When starting the optimization
from a seamless state, however, we can do better by incorporat-
ing them as hard constraints, ensuring that they remain satisfied
during the (higher-order) optimization.
We assume as input a piecewise linear seamless parametrization,
as generated by many recent techniques, such as [11, 12, 73, 74,
75, 76, 77, 78, 79]. To preserve the initial seamlessness during
higher-order optimization, we incorporate it as a hard constraint,
by eliminating one variable per constraint (15). Note that in this
way the PSD property of the Hessian HM (12) is preserved [80].
In the same elimination manner we can also incorporate hard
point constraints to fix selected vertices’ initial parameter values.

c0

c′
0

c′
3

c′
2

c′
1

c1

c2

c3

Figure 8: Images of two triangles with a common cut edge under degree 3 maps
with their associated control points. The red edge control points here satisfy the
seamlessness conditions (15) with k = 1.
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8. Results

In order to obtain some understanding of the benefits as well as
the cost of using higher-order parametrization, we apply the tech-
niques described to a range of models, in various resolutions, in
various constraint scenarios, and with various parameter settings
(degree, quadrature). Our optimization is generally initialized
using an injective piecewise linear parametrization obtained us-
ing Tutte’s embedding onto a disk of equal area. For experiments
with seamlessness constraints (Sec. 8.2), the initial piecewise lin-
ear parametrization is computed as described by [12].
In all experiments we employ the local injectivity test from
Sec. 5.2 in the line search. Starting from a locally injective ini-
tialization, this guarantees that the output is always locally in-
jective, no matter which (potentially local) distortion minimum
the optimization ends up in. The effect of additionally ensuring
global injectivity is demonstrated in Sec. 8.6.
Note that while the optimization is performed based on ĒM , i.e.
quadrature-based approximations of EM with appropriate num-
bers of quadrature points (cf. Sec. 8.3), objective values reported
and plotted in the following were generally evaluated using a
very large number (5050) of quadrature points for accurate and
fair comparison. These quasi-ground-truth values are denoted
EM (without the bar).

8.1. Distortion

We ran the described distortion optimization for different degrees
n, for a range of models (labeled A, B, ..., Z in the following,
specified in Appendix F), in various resolution versions, and us-
ing various settings in terms of constraints (free boundary, fixed
boundary, pinned vertices). In Fig. 9 we report the final dis-
tortion value EM

S D, relative to the base case of degree 1. It can

Figure 9: Comparison of final parametrization distortion EM
S D after optimization,

for • linear, • quadratic, • cubic order, on 26 different models (A-Z), for three
different mesh resolutions (number of triangles, denoted |M|), and three different
settings: Top row: free boundary. Middle row: fixed boundary. Bottom row:
free boundary, but some interior point constraints (five, randomly chosen). The
distortion of the linear case is taken as reference (100%), and the other cases are
plotted relative to that.

Figure 10: Comparison of final parametrization distortion EM
ASAP after optimiza-

tion, for • linear, • quadratic, • cubic order, on 26 different models (A-Z), for
three different mesh resolutions (number of triangles, denoted |M|), with fixed
circular boundary. The distortion of the linear case is taken as reference (100%),
and the other cases are plotted relative to that.

be observed that (not surprisingly), higher order consistently en-
ables achieving lower distortion. The amount of improvement
depends on circumstances, though: as can be observed quite
clearly, the improvement commonly diminishes with increasing
mesh resolution; the benefit is thus particularly significant for
coarse meshes. It is important to note that it is not the absolute
mesh resolution that determines the gain; rather the mesh resolu-
tion relative to the geometric complexity of the surface.
Conversely, the improvement achieved by higher order
parametrization often increases when the parametrization is con-
strained in a more severe manner (bottom row). Comparing the
quadratic and the cubic case, it can also be concluded that going
beyond cubic order is likely of very insignificant practical benefit
in terms of distortion.
To provide a deeper insight into the distortion differences (be-
yond the total distortion), we show the histograms of the distor-
tion distribution over the mesh (exemplarily for model C, which
shows average behavior in Fig. 9) for these 3 × 3 settings in
Fig. 11.
Analogous to the middle row of Fig. 9, Fig. 10 reports the dis-
tortion reduction relative to the linear case when using not an
isometry-promoting but a conformality-promoting distortion ob-

Figure 11: Histograms of final pointwise distortion ES D(ξ), comparing different
parametrization orders: • linear, • quadratic, • cubic for model C (for the same
settings as in Fig. 9). Pointwise ES D is shown on the horizontal axis, relative
surface area on the vertical axis (log scale).
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linear quadratic cubic

EM
ASAP = 0.62 EM

ASAP = 0.27 EM
ASAP = 0.07

Figure 12: Example result on a coarse mesh using conformal distortion objec-
tive ĒM

ASAP. Left: standard piecewise linear parametrization. Middle: piecewise
quadratic parametrization. Right: piecewise cubic parametrization. The corre-
sponding final distortion objective values are shown below.

jective ĒM
ASAP, detailed in Appendix B. It can be observed that

the benefit is commonly even much larger. This can be attributed
to the fact that the isometric distortion objective Ēt

S D favors lin-
earity (rigid maps being the optimum per element) while curved
elements can be optimal under Ēt

ASAP (where more general, non-
linear Möbius maps are optimal). Fig. 12 shows an example
parametrization.

8.2. Visual Quality

In Fig. 1 an example model (in low (green) and medium (blue)
resolution) was textured (see Appendix C for information on
the shader-based texture lookup) using a distortion-optimized
parametrization with linear or cubic basis functions. An interest-
ing observation is that – while in both cases we ensure only C0

continuity of the parametrization – there are hardly any texture-
isoline kinks noticeable across mesh edges.
In Fig. 13 we added penalty terms to the objective, pulling cer-
tain vertices to user-specified positions in parameter space in a
2D deformation example. We show the resulting mesh image in
parameter space, comparing the linear and the quadratic case.
In Fig. 14 hard constraints (15) are employed to preserve seam-
lessness of the linear input parametrization, generated using [12].
Differences are particularly obvious near singularities (paramet-
ric cones). Note that relatively coarse meshes have been used for
visual clarity here.

input

linear quadratic

Figure 13: User-specified deformation using soft point constraints (yellow dots),
minimizing ĒS D. The blow-ups highlight how visible artifacts due to the piece-
wise linear nature vanish in the quadratic case on the right.

input linear quartic

Figure 14: Left: (non-rounded) seamless parametrization generated using the
method of [12], taken as starting point by our optimization. Singularities are
marked by orange dots. Center: piecewise linear optimization result. Right:
piecewise quartic optimization result. Seamlessness is preserved due to con-
straints (15). Note that seamlessness does not imply the grid matches transla-
tionally across cuts (green); to that end the map would furthermore have to be a
rounded seamless map [74].

8.3. Choice of Quadrature Scheme

A relevant parameter is the number of quadrature points per tri-
angle in Eq. (9): it determines how accurately the integrated dis-
tortion measure is approximated. A choice of too few can slow
down convergence and lead into local minima; a generous choice
may unnecessarily increase runtime. We tested a range of num-
ber choices for various orders. In Fig. 15 the final distortion
that is achieved using varying numbers of quadrature points is
depicted for the models from Fig. 9 – for the quadratic and cu-
bic case without incremental degree elevation. Fig. 16 shows the
same with incremental degree elevation. It can easily be observed
that in this (practically more relevant) case the choice of number
of quadrature points is less critical. While relatively small num-
bers suffice in many cases, we suggest a conservative choice of
36 quadrature points for the quadratic, and 78 for the cubic case.
Note that while with any choice of quadrature scheme the
approximation can be arbitrarily off, by construction the
parametrization output by our method is always valid (satisfying
the desired local/global injectivity properties).
While in previous work on the related topic of curved meshing,
e.g. [62, 32, 44], the use of specific quadrature schemes [81, 64]
was suggested, we very consistently found equal numbers of uni-
formly distributed, uniformly weighted quadrature points to per-
form better in terms of convergence speed and overall optimiza-
tion behavior (cf. the ◦ marks in Fig. 15). This may be related
to the integrand in (9) being a rational function, while the above
schemes are optimal for polynomials. We thus use uniform tri-
angular lattice quadrature points, with barycentric coordinates
1
m (a, b, c), where a, b, c ∈ N0, a + b + c ≤ m, and uniform weights
wl = 2/(m(m + 1)). Note that for a choice of m ∈ N this leads to
m(m + 1)/2 quadrature points, hence the particular values (3, 6,
10, 15, 21, ...) in Fig. 15 and 16.

8.4. Timing

Our implementation supports arbitrary degree. In a concrete ap-
plication one could achieve higher performance by specializing
to a particular degree. The overhead is not significant, though;

9



Figure 15: Final distortion EM
S D after optimization using different numbers of

quadrature points for • quadratic and • cubic order. Each graph corresponds to
one of the models and cases from Fig. 9. The dashed lines indicate our suggested
numbers of quadrature points to be used. The ◦marks indicate the final distortion
achieved with the quadrature schemes of [64] and [81] for the highest settings
reported in these papers (79 and 175 points, respectively) instead of our uniform
scheme; some of these marks are not visible due to very high values (> 103),
indicating that optimization got stuck prematurely.

Figure 16: Analogous to Fig. 15 but with incremental degree elevation: Final
distortion EM

S D after optimization using different numbers of quadrature points
for • quadratic and • cubic order.

Fig. 17 shows the time taken for setup and solve by our imple-
mentation set to linear, relative to an implementation (CompMa-
jor) specifically for the linear case, published by [4].
In Fig. 18 we demonstrate how the numbers of control points
and of quadrature points (both increasing with increasing order)
affect the time required to perform the optimization (model A,
10K). The behavior is consistent with the expectations that the
number of quadrature points has a linear effect on the evaluation
cost of energy, Jacobian, and Hessian, while the number of con-
trol points (thus the polynomial order) has a super-linear effect.
As outlined in Sec. 4.3, it is thus advisable to start with or-
der 1 optimization and incrementally elevate the degree. In this
case essentially any additional time granted (over the amount of
time taken by the linear case) immediately leads to advantages in
terms of distortion. This is shown in Fig. 19. Reaching the final
minimum can, however, still take several times longer.

8.5. Comparison to Refined Piecewise Linear

As has become clear, using higher-order basis functions per el-
ement, i.e. per triangle, enables higher quality parametrizations

Figure 17: Time (averaged over the optimization iterations) to setup Jacobian and
Hessian and to solve for the Newton step (13), relative to the number of faces in
different models. We compare our arbitrary-order implementation, set to degree
1, with CompMajor, a degree-1-specific optimization code.

Figure 18: Distortion reduction over time during optimization, comparing • lin-
ear, • quadratic, • cubic – all without incremental degree elevation; cf. Fig. 19.
Left: To highlight the effect of the employed degree (thus the number of control
points) on the runtime, here we used a constant (degree-independent) number of
quadrature points (55). Right: Using degree-dependent numbers of quadrature
points (suggested defaults: B1: 1, B2: 36, B3: 78).

Figure 19: Distortion reduction over time during optimization with incremental
degree elevation, comparing • linear, • quadratic, • cubic. The dashed graph
shows the cubic case without incremental degree elevation for comparison.

of lower distortion – at the cost of higher optimization times and
the result being in a form that is not standard in geometry pro-
cessing applications. An intermediate alternative would be to use
piecewise linear basis functions per element – corresponding to
classical linear basis functions on a refined version of the mesh –
which could simplify interaction with other standard algorithms.
To get an idea of how much refinement would be necessary to
achieve comparable result quality and what optimization times
would be required on these refined meshes, we performed com-
parative experiments on hierarchically refined versions of the
input meshes. Dyadic refinement, i.e., refinement using 1-to-4
splits, was used, yielding meshes with 4k |M| linear pieces after k
refinement iterations applied to an input mesh with |M| triangles.
In Fig. 20 the outcome of this experiment is demonstrated on
exemplary input models. It can be observed that with an increas-
ing number of linear pieces per element the final distortion de-
creases. To achieve a distortion as low as or lower than with
one quadratic piece per element, sometimes 16 but often at least
64 linear pieces per element (i.e., 2.5 or 7.5 as many degrees of
freedom) are necessary. Note that already after one step of re-
finement (4 pieces per element) the optimization problem has the
same size in terms of unknowns as the quadratic case.
We note that other, perhaps adaptive, schemes to determine the
number and arrangement of linear pieces per element could be
employed; this is a separate research question of potential inter-
est for future work. As the optimally achievable result quality is
to some extent determined by the input mesh’s quality (in terms
of element shape), an interesting particular case would be the use
of intrinsic Delaunay overlays [82, 83] to determine the piece-
wise structure per element. We note, however, that some of the
models included in Fig. 9 and 10 that show higher-order benefits
(e.g. L, P, U, Z) are nearly intrinsic Delaunay meshes already.
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Figure 20: Comparison to refined linear parametrization: energy vs time (doubly
logarithmic) during optimization until convergence (obj. decrease < 0.001%) for
models A, B, C (|M| = 500). Left: free boundary setting of Fig. 9 top. Right:
random constrained interior points setting of Fig. 9 bottom.

8.6. Global Injectivity

Examples of using the global injectivity ensuring technique from
Sec. 6 are shown, including the higher-order scaffold mesh, in
Fig. 21. An interesting piece of statistical information from these
experiments is the number of Bézier flips performed. The num-
ber of performed flips in these three examples (top to bottom) is
1389, 1127, 460. The number of intended flips is 1396, 1141,
469. This means the number of edges that could not be flipped
because injectivity preserving inner control point values did

not exist or could not be found is very small.
The general relevance of Bézier flips for
scaffold mesh quality can be observed in the
inset, which shows the final result of the He-
lix example from Fig. 21 if flips were not
used.

Based on the example from Fig. 13, in Fig. 22 another bijective
higher-order example is shown.

8.7. Summary

To briefly summarize the lessons learnt from the experiments:

• Use incremental degree elevation for efficiency. Elevating
when the relative change goes < 1% is a good default.

• Use uniform quadrature. Default number of quadrature
points per element: B2: 36; B3: 78.

• Use quadratic or cubic degree. Going beyond cubic com-
monly has a negligible effect only.

• The distortion benefit is more significant the more distortion
is inevitable (due to constraints or surface curvature).

initial intermediate intermediate final bijective non-bijective

Figure 21: Globally injective parametrization optimization in the quadratic case
for three examples (top (Camel) and middle (Helix): free optimization; bottom
(Gingerbread): point constraints as in Fig. 13). Shown are the models’ images
in parameter space, surrounded by the scaffold triangles (white). Left: piecewise
linear initialization, followed by two piecewise quadratic intermediate optimiza-
tion states and the final result; notice the curved scaffold triangles. Right: re-
sult when not ensuring global but just local injectivity; overlaps indicated in red.
(Camel model from [5])

• The distortion benefit is more significant the lower the mesh
resolution (relative to the geometric surface detail).

• The benefit for conformal distortion objectives is larger than
for isometric ones.

9. Limitations and Future Work

Efficiency. The main factor responsible for longer computation
times compared to linear parametrization is not the increased
number of variables (e.g. 6 or 10 control points for degree 2 or
3, compared to 3 for degree 1) but the increased number of sum-
mands entering energy, Jacobian, and Hessian due to quadrature
(notice the “M × Q” in Eq. (9)). The setup of the Hessian ma-
trix, rather than the subsequent solve (13), thus easily becomes
the bottleneck. Preliminary experiments suggest that significant
speed-ups may be achievable by choosing the number of quadra-
ture points adaptively and dynamically, on a per-triangle basis.
While generic adaptive quadrature techniques [84] could be em-
ployed, investigation of specialized strategies would be interest-
ing. In particular, for triangles over which the Jacobian varies
little, fewer quadrature points may be sufficient. This variance
could be estimated based on lower and upper bounds of the Ja-
cobian determinant, similar to the approach in Sec. 5.

globally injective locally injective

Figure 22: Left: globally injective piecewise quadratic deformation. Right: lo-
cally (but not globally) injective piecewise quadratic deformation (from Fig. 13);
violations of global injectivity indicated by red arrows.
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Continuity. The parametrizations we compute are C0. Smooth
maps of higher continuity may be of interest. Construction of
such function spaces (ultimately spline spaces) is an involved
task on unstructured domains. For instance, to allow achieving
C1 continuity at least quintic polynomials [63, §4.2] or multi-
ple polynomial pieces per triangle [63, §5.1, §5.3] are necessary.
Furthermore, initialization and degree elevation are an issue in
this context, because the desired level of continuity cannot al-
ready be established and maintained throughout the lower de-
grees in general.

Global Injectivity. The scaffold mesh employed to ensure global
bijectivity may, in contrast to the linear case, unnecessarily re-
strict the solution space when only edge flips are employed for
modification. While we have sometimes observed issues with
this when using the scaffold element shape preservation objec-
tive [5], this was not the case when using our scaffold quality
objective E4. Deeper investigation of this topic in future work
would be valuable.

Inverse Map. In contrast to the linear setting, the inverse f −1 of
the map f is not readily available in closed form. So while it
is easy to map information from the surface into the parameter
domain or to pull information from the domain onto the surface,
mapping from the domain onto the surface requires non-trivial
approximative techniques [85, 86].

Bounded Distortion. Going beyond mere injectivity, strictly
bounding distortion may be of interest. Sufficient conditions for
the case of spline maps [87, 71] easily adapt to the Bézier case.
Unlike in deformation scenarios (as in Fig. 13 and Fig. 22) a ma-
jor challenge in the case of parametrization lies in finding a valid
initialization for optimization.

Finally, our empirical focus herein was on demonstrating that
abstract benefits in terms of lower distortion can be achieved us-
ing higher-order parametrization. The further exploration of con-
crete practical advantages that result from this will certainly be
of interest.
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Appendix A. Derivative Expressions

Expanding Eq. (11) results in

Ht = ∇g>∇2h∇g +

(
∂h
∂Σ

)
+

∇2(‖α‖ + ‖β‖)

+

(
∂h
∂σ

)
+

∇2‖α‖ −

(
∂h
∂σ

)
−

∇2‖β‖,

(A.1)

where

∇h = 2
[
Σ − Σ−3

σ − σ−3

]
, ∇2h = 2

[
1 + 3Σ−4 0

0 1 + 3σ−4

]
. (A.2)

Gradient and Hessian of ‖α‖ (and entirely analogously ‖β‖) and
in turn of g can be computed using

∇‖α‖ = ∇α>
α

‖α‖
, ∇2‖α‖ =

1
‖α‖
∇α>

(
I −

αα>

‖α‖2

)
∇α.

Computing∇α involves the gradient of ∂u
∂ξ0

, ∂u
∂ξ1

, ∂v
∂ξ0

and ∂v
∂ξ1

which
can be easily computed as they are linear functions, cf. Eq. (4),
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of our variables (the control points). More specifically, using the
auxiliary definition Bi jk ≡ 0 if i<0, j<0, or k<0, the derivatives
are given by

∂

∂ui jk

∂u
∂ξ0

= n
(
B(n−1)

(i−1) jk(ξ) − B(n−1)
i j(k−1)(ξ)

)
,

∂

∂ui jk

∂u
∂ξ1

= n
(
B(n−1)

i( j−1)k(ξ) − B(n−1)
i j(k−1)(ξ)

)
.

Notice that the Bernstein polynomials need to be evaluated at
the quadrature points ξl, l ∈ Q, which are the same on all trian-
gles. Thus, for efficiency, we can pre-compute all these relevant
Bernstein function values corresponding to our quadrature points
once, and reuse them for all triangles and all optimization steps.

Appendix B. Conformal Energy

The conformal distortion objective EASAP [88] used in Sec. 8.1
in Fig. 10 is defined based on

Et
ASAP(ξ) = (Σ(ξ) − σ(ξ))2. (7’)

To implement this objective, relative to ES D one merely needs to
replace h from (10) by the function

h
([

Σ

σ

])
= (Σ − σ)2 (10’)

and replace (A.2) with its gradient and Hessian expressions

∇h = 2
[
Σ − σ
σ − Σ

]
, ∇2h = 2

[
1 −1
−1 1

]
. (A.2’)

Appendix C. Shader-Based Evaluation

When the higher-order parametrization is to be used for texture
mapping, it is convenient to evaluate the mapping functions in a
fragment shader. To this end, the per-triangle control points can
be made available to the fragment shader via textures or texture
buffer objects. Evaluating the texture map for a fragment is then a
simple matter of evaluating Eq. (2), involving just powers of the
fragment’s barycentric coordinates and (precomputed) constant
factors n!/i! j!k!.

Appendix D. Insufficiency of Control-Triangle Condition

The Bézier control points form a control net consisting of sub-
triangles with corners ci jk, c(i+1) j(k−1), ci( j+1)(k−1). The signed area
Ai jk of such a sub-triangle is

Ai jk =
1
2

det
[

ui( j+1)k − ui jk ui j(k+1) − ui jk

vi( j+1)k − vi jk vi j(k+1) − vi jk

]
.

The injectivity condition described by [55] is based on the as-
sumption that whenever three pairwise adjacent sub-triangles
(depicted grey in Fig. D.23) have positive area, the de Casteljau
triangle formed by the points with the same barycentric coordi-
nates ξ in each of the three triangles has positive area as well, for
any choice of ξ. Fig. D.23 illustrates that this assumption does

Figure D.23: Counterexample for sufficiency of sub-triangle based condition.

not hold in general: while in the left configuration, the de Castel-
jau triangle (green) for ξ = (1/3, 1/3, 1/3) is positively oriented, in
the right configuration, it (red) is negatively oriented.
Interpreting the depicted example as a quadratic Bézier triangle,
this negative orientation implies that det Jφ(1/3, 1/3, 1/3) < 0 for
the configuration on the right.
While such configurations are rare in unconstrained parametriza-
tion settings according to our experiments, in the more intricate
constrained setting of Fig. 9 bottom this test actually incorrectly
certifies locally non-injective elements at some point during op-
timization for the majority of the models.

Appendix E. Bézier Bisection

In the following pseudocode we use di j as a shorthand for
di j(n̂−i− j), where n̂ is the degree, and r is a temporary buffer ar-
ray of length n̂.

1: procedure BézierBisect({di jk})
2: for 0 ≤ i ≤ n̂ do
3: for 0 ≤ j ≤ n̂ − i do
4: r j ← di j

5: d+
0i ← rn̂−i

6: d−0(n̂−i) ← r0
7: for 1 ≤ l ≤ n̂ − i do
8: for 0 ≤ j ≤ n̂ − i − 1 do
9: r j ←

1
2 (r j + r j+1)

10: d+
li ← rn̂−i−l

11: d−l(n̂−i−l) ← r0
12: return {d+

i jk}, {d
−
i jk}

13: end procedure

Appendix F. List of Models

Test models A-K (Fig. 9, etc.) were taken from the dataset of
[76]. Model L is courtesy of the AIM@Shape repository and the
models M-Z were obtained from [89]. Those of disk topology
were used directly, in those of sphere topology a hole was cut to
obtain a disk topology mesh.

A: Aircraft J: Oni S: G_Rebuilt
B: Armadillo K: VaseLion T: Hannya
C: Armchair L: Frog U: HeadSphinx
D: Bunny M: Aztec V: HighresFist
E: Buste N: BigHand W: MalteseFalcon
F: FaceYo O: DynamiteBust X: Monster
G: Gargoyle P: Dragon Y: Plate3
H: HandOlivier Q: Druid Z: S_Rebuilt
I: MaxPlanck R: FinialBinary
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