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Fig. 1. Example planar domain with piecewise polynomial boundary curve (red). Our method constructs higher-order (here: cubic) curved triangle meshes (of

controllable density) conforming to the prescribed curved boundary. The triangular elements (black edges) are provably regular, i.e., have injective geometric

maps, and provably conform precisely to the domain’s boundary. The blue blow-ups show the input curve’s Bézier control polygons, while the green and

orange blow-ups visualize the triangles’ regular geometric maps using blue parametric iso-curves between their black and red edges.

We present a mesh generation algorithm for the curvilinear triangulation of

planar domains with piecewise polynomial boundary. The resulting mesh

consists of regular, injective higher-order triangular elements and precisely

conforms with the domain’s curved boundary. No smoothness requirements

are imposed on the boundary. Prescribed piecewise polynomial curves in

the interior, like material interfaces or feature curves, can be taken into

account for precise interpolation by the resulting mesh’s edges as well. In its

core, the algorithm is based on a novel explicit construction of guaranteed

injective Bézier triangles with certain edge curves and edge parametrizations

prescribed. Due to the use of only rational arithmetic, the algorithm can

optionally be performed using exact number types in practice, so as to

provide robustness guarantees.
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1 INTRODUCTION

The meshing of given domains using conforming triangular ele-

ments is a cornerstone in graphics, geometry processing, numerical

simulation, and other fields. While often linear elements, triangles

with straight edges, are used, the potentially significant benefits

of higher-order polynomial elements with curved edges have been

discussed and demonstrated [Babuška and Guo 1996; Hu et al. 2019;

Oden 1994; Wang et al. 2013; Zlámal 1973]. The importance of accu-

rate curved boundary conformance was studied as well, e.g. [Bassi

and Rebay 1997; Ciarlet and Raviart 1972b; Luo et al. 2001].

We describe a method, based on a construction we call Bézier
guarding, to generate higher-order polynomial triangle meshes with

curved edges for arbitrary 2D domains with piecewise polyno-

mial boundary curves, interface curves, and constraint curves—

collectively referred to as domain curves in the following. We do

not impose any smoothness requirements on these curves. The

algorithm is general in that it supports arbitrary polynomial order.

To the best of our knowledge this method is the first to offer both

of the following output properties in combination:

(1) the meshes precisely conform to (instead of approximate) the

domain curves;

(2) the elements come with strictly injective and polynomial geo-
metric maps.

The latter point guarantees that each curved element is the image

of a straight-edge reference triangle under some injective polyno-

mial map—and that this map is known explicitly. In other words,
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(a) (b) (c) (d) (e) (f)

Fig. 2. Approach overview. Input curves (a) are covered from both sides by guarding triangles (b). Selective refinement yields disjoint guarding triangles (c). The

rest of the domain is triangulated using straight-edge triangles (d). For each triangular element (straight or curved), Bézier control point positions defining

regular geometric maps are constructed (e). Finally, the mesh can be optimized structurally and geometrically (f), preserving regularity and curve conformance.

each element can be represented as a planar Bézier triangle [Farin

1986] (or triangular Lagrange element) with strictly positive Jaco-

bian determinant (referred to as regular herein). This often is an

essential prerequisite for the use of these meshes in the context of

isogeometric analysis and FEM [Barrett 1996; Mitchell et al. 1971].

This is a nontrivial request: even if all edges bounding a triangular

region are formed by regular non-intersecting polynomial curves,

such a map for the interior may not exist for a given order, cf. Fig. 3.

If it does exist, there is no algorithm to provably find and construct

it. Our method provides this map per element by construction.

In cases of non-polynomial domain curves, conformance obvi-

ously cannot be achieved using polynomial elements. Our method

may still prove beneficial also in this scenario: while other meth-

ods approximate such generic domain curves as integral (not fully

controllable) part of the meshing process, our method provides the

opportunity of a priori approximation. One can prescribe precisely

by which polynomial curves the curves shall be approximated in the

mesh, which provides additional control and potential advantages

depending on use case and specific domain knowledge.

1.1 Approach Overview

Given a set of domain curves (Fig. 2a), in a first stage our method

covers these with a single layer of triangular elements per side

(Fig. 2b). Each one of these elements has two straight edges and part

of a domain curve as third edge. The number and distribution of

these elements is adaptively chosen such that they do not intersect

(Fig. 2c) and the geometric complexity of the curve part covered by

an individual element is bounded.

In a second stage, the rest of the domain, which due to the straight

edges of the covering elements is a straight-edge polygon with

holes, is meshed with straight-edge elements via simple polygon

triangulation (Fig. 2d).

Then, in a third stage, the triangular regions formed by the edges

(some straight, some curved) are equipped with geometric maps,

i.e., control points are constructed per element such that they define

a regular Bézier triangle that precisely fits the edges (Fig. 2e). To

this end we provide an explicit construction (Bézier guarding) that

provably yields regular elements only. Continuity between adjacent

elements is guaranteed by construction as well.

Finally, the generated valid curved mesh can be optimized geo-

metrically and combinatorially through incremental remeshing in a

manner that preserves its regularity, continuity, and conformance

to the domain curves (Fig. 2f).

2 RELATED WORK

Methods tackling the problem of higher-order 2D mesh generation

can be classified as indirect or direct [Dey et al. 1999]; we review the

most relevant aspects and relations to our method in the following,

with a focus on questions of injectivity and conformance.

2.1 Indirect Curved Meshing

Indirect approaches start by generating a mesh with linear straight-

edge elements. Subsequently, some or all of these are incrementally

curved with the goal of conforming to the domain curves. A variety

of deformation models have been considered for this task [Abgrall

et al. 2014; Fortunato and Persson 2016; Gargallo-Peiró et al. 2013;

George and Borouchaki 2012; Hu et al. 2019; Luo et al. 2004; Moxey

et al. 2016; Oliver 2008; Paul 2018; Persson and Peraire 2009; Poya

et al. 2016; Roca et al. 2011; Ruiz-Gironés et al. 2016; Shephard et al.

2005; Sherwin and Peiró 2002; Toulorge et al. 2013; Turner et al.

2018; Xie et al. 2013; Xu and Chernikov 2014], some additionally

interleaving mesh modification operators to increase robustness

[Cardoze et al. 2004; Dey et al. 1999, 2001; Hu et al. 2019; Luo et al.

Fig. 3. Examples of planar triangles with curved polynomial edges (left:

order 2; right: order 3; with Bézier control polygons) for which no injective

geometric map of the same order exists. In other words: no regular Bézier

triangle (of order 2 or 3, respectively) has these curves as its edges.
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2004; Shephard et al. 2005]. In part due to the non-convexity of these

deformation formulations, guarantees in the sense that eventually

conformance will be achieved are unavailable.

Other methods employ some form of projection or replacement

of initially straight edges by curves [Dey et al. 1999, 2001; Engvall

and Evans 2016; Jaxon and Qian 2014; Rangarajan and Lew 2014].

While this, for some approaches, can yield elements formed by

intersection-free curved edges, it does not generally guarantee the

existence (or knowledge) of injective polynomial geometric maps

of the desired order, cf. Fig. 3.

2.2 Direct Curved Meshing

Direct methods create elements with curved edges right away. A

common approach is to proceed in an advancing front manner,

creating elements along domain curves first. Those variants aiming

to ensure element regularity commonly employ non-polynomial

geometric maps, e.g., based on transfinite interpolation [Gordon

and Hall 1973; Haber et al. 1981; Mansfield 1978; Zlámal 1973], or

impose smoothness assumptions on the curves [Ciarlet and Raviart

1972a; Rangarajan and Lew 2014]. Often the construction of single

elements is considered; a complete mesh generation strategy in its

entirety is discussed in a few works only. An example is [Sevilla et al.

2016]; again non-polynomial geometric maps are obtained, targeting

a non-standard FEM approach. The question of how structural and

geometric optimization of the initially generated meshes could be

performed in a regularity and conformance preserving manner in

these particular settings is typically not addressed.

By contrast, our method yields standard polynomial elements

(which can be preferable [Solin et al. 2003, §3.3]), it supports arbi-

trary order, we describe the generation process for an entire mesh,

and we show that mesh optimization, preserving regularity and

conformance, can practically be performed in this setting.

An alternative strategy for triangles with no regular polynomial

map available is to initialize with irregular polynomial maps, and

subsequently try to untangle the mesh [Toulorge et al. 2013, 2016],

i.e., optimize the maps and the mesh’s geometry (or even structure)

with the goal of increasing the Jacobian determinant where it is

negative. Existing methods for this purpose, however, do not provide

guarantees of achieving both regularity and conformance.

2.3 Non-Conforming Meshing

Depending on the use case, it may be possible to work with meshes

that do not conform to the domain boundary or interface curves,

and therefore may use simpler elements—even Cartesian grids. Ex-

amples are cut cell methods [Burman and Hansbo 2010] and X-FEM

[Belytschko and Black 1999; Fries and Belytschko 2010]. It has been

noted that working with higher-order sub-elements can be of benefit

in this context as well [Cheng and Fries 2010].

2.4 Injectivity

A variety of algorithms have been described to test whether a given
higher-order triangular element is regular, i.e. whether its geometric

map is injective [Dey et al. 1999; George and Borouchaki 2012;

Gravesen et al. 2014; Hernandez-Mederos et al. 2006; Johnen et al.

𝜏𝑖

𝒑00 𝒑𝑛0

𝒑0𝑛

Ω𝑖

△

Fig. 4. Map 𝜏𝑖 from reference triangle △ to planar three-sided domain Ω𝑖

with curved boundary edges, represented in the Bernstein basis, i.e., as a

(here quartic) 2D Bézier triangle.

2012; Luo et al. 2002]. We, by contrast, aim to construct elements for

which this is guaranteed by construction.

A conservative injectivity test of the above kind is employed

in our subsequent mesh optimization stage in order to guarantee

regularity preservation.

3 CONFORMING CURVED TRIANGULATION

The high-level goal of the method described in this section is to

construct a planar curvilinear mesh of triangular elements 𝑡𝑖 of

arbitrary polynomial order 𝑛 that conformingly partitions a given

curvilinear domain formed by domain curves of order ≤ 𝑛. This
entails partitioning the domain into curved three-sided regions Ω𝑖

such that for each region a regular geometric map 𝜏𝑖 : △ → Ω𝑖 can

be defined. Here △ is an abstract reference triangle, also referred to

as parameter space, while Ω𝑖 is also referred to as physical space.

The map is called regular iff det 𝐽𝜏𝑖 ≠ 0 everywhere, where 𝐽𝜏𝑖 is the

map’s Jacobian. Regularity implies that themap is (locally) injective—

an essential prerequisite, e.g., for finite element techniques [Mitchell

et al. 1971; Solin et al. 2003].

We represent and define the map 𝜏𝑖 (and thus Ω𝑖 = 𝜏𝑖 (△)) in the

Bernstein basis, i.e. as a Bézier triangle [Farin 1986]. A 2D Bézier

triangle of order 𝑛 is specified by control points 𝒑𝑖 𝑗𝑘 ∈ R2 with

𝑖, 𝑗, 𝑘 ≥ 0 and 𝑖 + 𝑗 + 𝑘 = 𝑛. For brevity we omit the third (implied)

index 𝑘 = 𝑛 − 𝑖 − 𝑗 in the following. Fig. 4 shows an example.

From an operational point of view, our algorithm does not require

heavy machinery. Besides primitive geometric operations (like line

intersections and vector algebra) the only non-trivial ingredients

are well-known standard algorithms, namely:

• triangle-triangle intersection test

• polygon triangulation (with holes)

• Bézier curve bisection (de Casteljau)

3.1 Input

The input to our method is a set 𝐶 of prescribed polynomial curves

𝒄𝑖 : [𝑡𝑖,0, 𝑡𝑖,1] → R2 of arbitrary order, called domain curves. With-

out loss of generality, we may assume [𝑡𝑖,0, 𝑡𝑖,1] = [0, 1] in the

following to keep the exposition simple. The (directed) unit tangent

vector of a curve 𝒄𝑖 is denoted 𝒄t
𝑖
: [0, 1] → 𝑆1, with 𝒄t

𝑖
= 𝒄 ′

𝑖
/∥𝒄 ′

𝑖
∥.

The following is assumed about the set𝐶 of domain curves (Fig. 5):

(a) No Irregularity: curves are regular, i.e., ∥𝒄 ′
𝑖
(𝑡)∥ ≠ 0,∀𝑡 ∈

[0, 1].
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(b) No Degeneracy: at coincident end points, two curves do

not form an angle-zero corner, i.e., 𝒄𝑖 (𝑠) = 𝒄 𝑗 (𝑡) ⇒ 𝒄t
𝑖
(𝑠) ≠

±𝒄t
𝑗
(𝑡) (‘+’ if 𝑠 = 𝑡 , ‘−’ otherwise), for 𝑠, 𝑡 ∈ {0, 1}.

(c) No Intersection: curves only (self-)intersect at their end

points, i.e., 𝒄𝑖 (𝑠) ≠ 𝒄 𝑗 (𝑡) ∀𝑠 ∈ [0, 1], 𝑡 ∈ (0, 1), (𝑖 ≠ 𝑗 ∨ 𝑠 ≠ 𝑡).
Assumption (a) is a fundamental requirement (not specific to

our method): if a curve is irregular it cannot, in general, be the

boundary curve of a regular Bézier triangle. In certain cases a regular

reparametrization, i.e., a regular curve of the same order with the

same image, may exist, but this is not generally the case.

Assumption (b) likewise is a fundamental requirement: the corner

formed by two such curves (or one closed curve) cannot be the

corner of a regular Bézier triangle; the geometric map’s Jacobian

determinant would vanish at the corner point.

Assumption (c) is to keep the exposition focused. In case it is

not satisfied by a given set of domain curves, a satisfying set can

be derived by splitting violating curves at their intersection points

[Zukerman et al. 2019]. As intersection points may not be numer-

ically representable without error, approximation techniques for

consistent rounding to limited precision numbers have been pro-

posed [Eigenwillig et al. 2007].

3.2 Bézier Guarding

The goal of the algorithm described in the following is to generate

a set of curvilinear triangular elements covering both sides of an

individual domain curve in a conforming way. As a first step, curves

are (virtually) split into guardable sub-curves (cf. Fig. 6) via (repeated)
bisection, i.e., subdivision at 𝑡 = 1/2 [Farin 2002, §5.4].

Definition 3.1 (Guardable Curve). Let 𝒑𝑖 , 𝑖 ∈ {0, . . . , 𝑛} be the

Bézier control points of an order 𝑛 curve 𝒄 , forming the control

polygon 𝑃𝒄 . The control vectors of 𝑃𝒄 are 𝒔𝑖 = 𝒑𝑖+1 − 𝒑𝑖 . We call the

curve 𝒄 guardable iff there exists a direction 𝒅 such that 𝒅T𝒔𝑖 > 0

for all 𝑖 .

Note that this implies that for each side of the Bézier control

polygon 𝑃𝒄 there is a direction (a point at infinity) from which the

entire side is visible. As a side note, by implication of the hodograph

property of Bézier curves [Sederberg and Meyers 1988] this further-

more implies (but is not equivalent to) the entire curve being visible

from these two directions (one per side).

Proposition 3.2. Repeated bisection of a non-guardable curve
eventually yields sub-curves that all are guardable.

Fig. 5. Curve configurations excluded by the input assumptions (Sec. 3.1).

Left: irregular cubic curve with vanishing derivative (first and second Bézier

control points are coincident). Center: two curves forming an angle-zero

corner (due to coinciding tangents). Right: two curves intersecting.

𝒅

𝒑0

𝒑1

𝒑2 𝒑3

𝒔0
𝒔1

𝒔2

Fig. 6. A guardable cubic curve (Def. 3.1) with its three Bézier control vectors

𝒔𝑖 and their projection onto an axis 𝒅 of the curve (Def. 3.4).

Proof. This follows from the convergence of control polygons to

a flat state, i.e., parallel control vectors 𝒔𝑖 , under curve subdivision
[Li et al. 2012; Morin and Goldman 2001]. □

For each side of a guardable curve 𝒄 , with endpoints 𝒑0 and 𝒑𝑛 ,
we now construct a guard point 𝒐. This guard is chosen such that

together with curve 𝒄 , the straight line segments 𝒑0𝒐 and 𝒑𝑛𝒐 form

a triangular region (with one curved edge and two straight edges),

and that this region admits a regular geometric map of the same

order as 𝒄 . The explicit construction of this map is detailed in Sec. 3.3.

Definition 3.3 (Guarding Triangle). For a side of a curve 𝒄 with
guard 𝒐, the triangular region formed by 𝒄 , 𝒑0𝒐, and 𝒑𝑛𝒐 is called
this side’s guarding triangle (see Fig. 7).

Definition 3.4 (Curve Axis). A direction 𝒅 for which 𝒅T𝒔𝑖 > 0 for

all Bézier control vectors 𝒔𝑖 of a guardable curve 𝒄 , we call an axis
of the curve.

For some curve axis 𝒅, let 𝒔+ be the control vector minimizing 𝒅T𝒔𝑖
that points counterclockwise relative to 𝒅, and 𝒔− the minimizer

that points clockwise. Consider a line 𝐿+ through curve endpoint 𝒑0

in direction 𝒔+, and a line 𝐿− through curve endpoint 𝒑𝑛 in direction

𝒔−. Let 𝒙 be the intersection point of 𝐿+ and 𝐿−. If both lines are

parallel, this implies the curve is straight and 𝐿+ = 𝐿−; in this case

the intersection point is not unique and we let 𝒙 be the mid point of

𝒑0 and 𝒑𝑛 . We define𝑤 = ∥𝒑0 − 𝒑𝑛 ∥ as the width of the curve. The

guard 𝒐𝑙 of the left curve side is defined as 𝒐𝑙 = 𝒙+𝜇 (𝑤2/𝑤̂)𝒏, where
𝒏 is a unit vector perpendicular to and counterclockwise of 𝒅, and
𝜇 > 0 is a parameter. The normalization factor 𝑤̂ denotes the curve’s

initial width—it remains constant when the curve is subdivided (in

step (2) of the mesh generation algorithm of Sec. 3.4).
1

The parameter 𝜇 allows for a trade-off: smaller values lead to

triangles that hug the domain curvesmore tightly (leading to quicker

termination of the meshing algorithm as a whole, cf. Sec. 3.4) but

that at the same time commonly have higher initial map distortion.

The construction is correct for any positive choice 𝜇 > 0; our default

choice of 𝜇 = 10
−2

is justified in Sec. 5.6.

Analogously, a guard 𝒐𝑟 for the curve’s right side is obtained

by applying the construction to the reverse curve. In this way a

guarding triangle for each curve side is defined.

1
The amount of translation in normal direction being relative to ∥𝒑0 −𝒑𝑛 ∥ (or another
curve size dependent measure), and depending superlinearly (𝑤2

) on this measure, is

required to ensure termination of the meshing algorithm as a whole, cf. Lemma 3.7.
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𝒅
𝒑0

𝒑𝑛

𝒙

𝒐

𝐿+ 𝐿−

𝒔− 𝒔+

Fig. 7. Construction of a guarding triangle (Def. 3.3) using guard 𝒐. Point 𝒙
is the intersection of lines 𝐿+, 𝐿− parallel to the control vectors 𝒔+, 𝒔− that
are the steepest (relative to the curve’s axis 𝒅).

Definition 3.5 (Curve Envelope). The quadrilateral formed by the

four straight edges of the two guarding triangles of a curve 𝒄 , i.e.,
spanned by endpoints 𝒑0, 𝒑𝑛 and guards 𝒐𝑙 , 𝒐𝑟 , is called the enve-
lope 𝐸 (𝒄).

By construction, 𝒄 is contained in 𝐸 (𝒄), and only the curve’s

endpoints lie on the boundary 𝜕𝐸 (𝒄).
Any axis 𝒅 according to Def. 3.4 can be chosen for the above

guard and envelope construction. In order to yield small envelopes

on average it is advisable to symmetrically choose the bisector

direction of 𝒔+ and 𝒔−, i.e., 𝒅 = 𝒔+

∥𝒔+ ∥ +
𝒔−

∥𝒔− ∥ .

3.3 Geometric Maps

3.3.1 Curved Elements. We now show how control points for a

regular Bézier triangle of order 𝑛 to serve as geometric map for a

guarding triangle above a curve 𝒄 of order 𝑛 can be constructed. As

before, 𝒅 denotes the curve axis direction used in the guard points’

construction, and 𝒏 the corresponding normal. Fig. 8 illustrates the

construction.

Let ∨𝑖 be a cone with apex 𝒑𝑖 , bounded by the minimizing direc-

tions −𝒔− and 𝒔+ (cf. Sec. 3.2). Note that ∨𝑖 contains 𝒏. Let 𝒓 be the
intersection point of the cone’s boundary 𝜕∨𝑛−1 and 𝒑𝑛𝒐.

Consider a line 𝐿 in axis-direction 𝒅, with normal 𝒏, such that it

separates the guard 𝒐 from control polygon 𝑃𝒄 and 𝒓 . Then 𝐿 has

one intersection point with each of the guarding triangle’s straight

edges; denote these 𝒒0 and 𝒒𝑛−1. On this line we choose 𝑛−2 further
distinct points 𝒒1, . . . , 𝒒𝑛−2, ordered from 𝒒0 to 𝒒𝑛−1.
These points are chosen such that 𝒒𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 2 lies in the

interior of the cone ∨𝑖 . One easily verifies that, by construction,

such a choice is always possible: the in-cone positions for 𝒒𝑖 on line

𝐿 are in the intersection segment 𝑆𝑖 = 𝐿 ∩ ∨𝑖 . Let ℓ (𝑡) be a linear
parametrization of 𝐿, with ℓ (0) = 𝒒0 and ℓ (1) = 𝒒𝑛−1; then segments

𝑆𝑖 correspond to parameter intervals [𝑙𝑖 , 𝑟𝑖 ] on ℓ . The segments are

ordered along 𝐿 in the following sense: 𝑙𝑖 ≤ 𝑙𝑖+1 and 𝑟𝑖 ≤ 𝑟𝑖+1,
0 < 𝑟1 and 𝑙𝑛−2 < 1. One possible valid construction therefore is

𝒅
𝒑0

𝒑4

𝒒0 𝒒1 𝒒2 𝒒3

𝒐

𝒓

𝒏

∨1
∨2

∨3
𝐿

𝐿3

𝐿2

𝐿1

𝐿0

𝐾3

𝐾2

𝐾1

𝐾0

𝒔− 𝒔+

Fig. 8. Construction of a geometric map for a guarding triangle (Sec. 3.3.1),

exemplarily for a quartic curve. The cones ∨𝑖 are shown in light grey. In

this example the points 𝒒𝑖 , 0 < 𝑖 < 𝑛 − 1, were chosen as the center of

the respective cone segment. The blue points, together with the three black

corner points, form control points of a regular Bézier triangle.

to define 𝒒𝑖 = ℓ (𝑡𝑖 ) with 𝑡0 = 0, 𝑡𝑖 = 1

2
(max(𝑡𝑖−1, 𝑙𝑖 ),min(𝑟𝑖 , 1)),

incrementally from 𝑖 = 1 to 𝑛 − 2. Intuitively, point 𝒒𝑖 is put in the

center of its valid segment 𝑆𝑖 clamped from below by the previous

point 𝒒𝑖−1 and clamped from above by the last point 𝒒𝑛−1.
To conclude the construction, we define the control points as

intersection points (cf. Fig. 8) of the following lines for 0 ≤ 𝑖 < 𝑛:
• line 𝐾𝑖 parallel to 𝒑0𝒐, through point 𝒒𝑖 .
• line 𝐿𝑖 parallel to 𝐿, through point 𝒉𝑖 = intersect(𝐾𝑖 ,𝒑𝑛𝒐).

Let 𝒙𝑖, 𝑗 = intersect(𝐾𝑖 , 𝐿𝑗 ). Note that 𝒙𝑖,𝑛−1 = 𝒒𝑖 and 𝒙0,0 = 𝒐.
The Bézier triangle control points are denoted 𝒑𝑖 𝑗 , 𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤

𝑛. We define them as

𝒑𝑖 𝑗 =

{
𝒑𝑖 𝑗 = 0

𝒙𝑖,𝑛−𝑗 𝑗 > 0

In Sec. 3.6 we prove that these control points define a regular

Bézier triangle in any case.

3.3.2 Straight Elements. For step (5) of the algorithm in Sec. 3.4 we

furthermore need to be able to construct regular Bézier elements for

straight-edge triangles—with control points along edges prescribed

in a certain manner to ensure 𝐶0
-continuity across edges. On edges

adjacent to a guarding triangle, we adopt the edge control points

constructed for this guarding triangle; on edges adjacent to another

straight-edge triangle, we prescribe a linear map (i.e., uniformly

distributed edge control points). Due to the manner of triangulation

in step (3) (with splitting of certain triangles) each straight-edge

triangle is adjacent to at most one guarding triangle.

Given a straight-edge triangle with corner points 𝒂, 𝒃, 𝒄 , and
at most edge (𝒂, 𝒃) with non-uniform prescribed control points

(𝒑0, . . . ,𝒑𝑛 in strictly monotone order along the edge, with 𝒑0 = 𝒂
and 𝒑𝑛 = 𝒃), we define Bézier triangle control points, with 𝑘 =

𝑛 − 𝑖 − 𝑗 , as

𝒑𝑖 𝑗 =

{
𝒑𝑖 𝑗 = 0

𝑘
𝑛 𝒂 +

𝑖
𝑛𝒃 +

𝑗
𝑛 𝒄 𝑗 > 0
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𝒑0

𝒑1𝒑2

𝒑3
𝒑4

𝒄

Fig. 9. Regular Bézier control points for a straight-edge triangle with non-

uniform (butmonotone) control point distribution along one edge (Sec. 3.3.2).

These control points are illustrated in Fig. 9. Regularity of this

construction is shown in Sec. 3.6.

3.4 Complete Meshing Algorithm

Given the input set of domain curves, the following steps are ex-

ecuted. The output is a curve conforming mesh of regular higher-

order triangles.

(1) While there is a non-guardable curve 𝒄 , bisect it, i.e., replace
it by two sub-curves, each reparametrized to 𝑡 ∈ [0, 1].

(2) While there is a pair 𝒄𝑖 , 𝒄 𝑗 of (guardable) curves whose en-
velopes 𝐸 (𝒄𝑖 ), 𝐸 (𝒄 𝑗 ) intersect except at the curves’ endpoints,
bisect the one with larger envelope (Fig. 10).

(3) Triangulate a bounding polygon (e.g., an axis-aligned rec-

tangle) encompassing all envelopes that has all envelopes as

holes. Split triangles that are edge-adjacent to two guarding

triangles.

(4) Construct Bézier control points defining a regular geometric

map per guarding triangle (Sec. 3.3.1).

(5) Construct Bézier control points defining a regular geometric

map per non-guarding (straight-edge) triangle (Sec. 3.3.2).

Remark (envelope size): In step (2), any notion of envelope size can

be used, as long as it is positive and converges to 0 under curve

Fig. 10. Illustration of algorithm step (2): two curves’ envelopes are inter-

secting (red). Here bisecting one curve (the one with larger envelope height,

dashed) resolves the conflict; in general repeated bisection may be required.

bisection, cf. Lemma 3.7. Choosing the envelope’s height, defined as

|𝒏T (𝒐𝑙 − 𝒐𝑟 ) |, proved to be a good heuristic to minimize the total

number of bisections.

Remark (closed domain): In the case that the input boundary curves

form a closed domain Ω, one can easily restrict the algorithm to this

domain (instead of a bounding box). To this end, one simply excludes

the outer sides of boundary curves from the algorithm, i.e., boundary

curves have one-sided envelopes in step (2), and triangulation is

applied to the polygon Ω\ ∪𝑖 𝐸 (𝒄𝑖 ) in step (3).

3.5 Proof of Termination

Termination of (1) follows directly from Prop. 3.2. Termination of

(2) is shown using the following proposition.

Lemma 3.6. Bisection of a guardable curve yields guardable curves.

Proof. The control vectors of the sub-curves are convex combi-

nations of the control vectors of 𝒄 [Farin 2002, §5.4]. Therefore, if

each side of 𝑃𝒄 is visible from some directions, so are the sub-curves’

control polygons’ sides. □

Lemma 3.7. For a guardable curve 𝒄 , let 𝐻 (𝒄) = 𝜕𝐸 (𝒄)\{𝒑0,𝒑𝑛}.
𝐻 (𝒄) converges to the interior of 𝒄 under bisection, and the two inner
angles of 𝐸 (𝒄) at 𝒑0 and 𝒑𝑛 converge to 0.

Proof. Under subdivision of 𝒄 , 𝑃𝒄 converges to that curve in

a pointwise manner (with respect to a uniform parametrization)

[Prautzsch and Kobbelt 1994]. Furthermore, the control polygon

of an individual sub-curve resulting from subdivision converges

to a straight line segment, the control vectors 𝒔𝑖 converge to all

be parallel [Li et al. 2012; Morin and Goldman 2001]. Hence, the

intersection points 𝒙 (cf. Sec. 3.2) converge to the curve, in particular

to the center of the sub-curve. Points 𝒙 are well-defined because the

sub-curves remain guardable (Lemma. 3.6).

At the same time, the width 𝑤 of a curve converges to 0 under

subdivision. Hence, the guards 𝒐 (defined as 𝒙+𝜇 (𝑤2/𝑤̂)𝒏) converge
to 𝒙 , thus to the center of the sub-curve as well. Therefore the union
of 𝒑0𝒐 and 𝒐𝒑𝑛 converges to the curve.

It follows that the envelope boundary without the curve’s end-

points, 𝐻 (𝒄), converges to the interior of the curve.

As the convergence of 𝒐 to 𝒙 is asymptotically faster (quadratic

in𝑤 ) than the convergence of the curve width to 0 (linear in𝑤 ), the

inner angles of 𝐸 (𝒄) at 𝒑0 and 𝒑𝑛 converge to 0. □

Fig. 11 illustrates this behavior.

Proposition 3.8. Step (2) of the algorithm from Sec. 3.4 terminates.

Fig. 11. Envelopes converging to a curve (blue) under repeated bisection.
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Proof. Input curves do not intersect except at their endpoints by

assumption (c), and bisection in steps (1) and (2) does not change that.

Due to Lemma 3.7, under sufficient (finite) subdivision the envelopes

of two non-intersecting curves do not intersect. For two general

curves intersecting at their endpoints, this could be the case in the

limit only: if they form a zero angle, no finite number of subdivisions

will suffice. Due to assumption (b), however, intersecting curve

pairs form non-zero angles only, such that due to Lemma 3.7 under

sufficient (finite) subdivision non-intersecting envelopes result.

Assume for a moment that in step (2) both curves, 𝒄𝑖 and 𝒄 𝑗 , were
bisected if their envelopes intersect. For this variant it is obvious that

eventually sufficient subdivision will be achieved. In case, however,

one chooses to only bisect one of the two curves in conflict, care

must be taken. If the same of two curves in conflict, say 𝒄𝑖 , was
constantly chosen, this could lead to an infinite recursion (if 𝐸 (𝒄 𝑗 )
intersects the curve 𝒄𝑖 itself, not just 𝐸 (𝒄𝑖 )). By assigning to curves

some positive measure that converges to 0 under bisection (like the

envelope height, cf. Sec. 3.4; alternatives are the curve width or the

envelope’s area or circumference) and always choosing the one with

larger measure value, one guarantees that both conflicting curves

will eventually be bisected until the conflict is resolved. □

3.6 Proof of Regularity

Let 𝒑𝑖 𝑗 ∈ R2, 𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛, be the control points of a Bézier
triangle 𝜏 . The vectors Δ0

𝑖 𝑗
= 𝒑 (𝑖+1) 𝑗 −𝒑𝑖 𝑗 , 𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛 − 1, we

call the 0-vectors and Δ1

𝑖 𝑗
= 𝒑𝑖 ( 𝑗+1) − 𝒑𝑖 𝑗 the 1-vectors of 𝜏 . Fig. 12

illustrates these vectors.

Proposition 3.9. If all 0-vectors of a 2D Bézier triangle 𝜏 are
contained in a sector 𝑟0 ⊂ 𝑆1, all 1-vectors in a sector 𝑟1 ⊂ 𝑆1, 𝑟0∩𝑟1 =
∅, and both sectors are contained in the interior of a common sector 𝑟
of angle 𝜋 , then 𝜏 is regular.

Proof. The Jacobian of map 𝜏 is 𝐽𝜏 = 𝑛[∑Δ0

𝑖 𝑗
𝐵𝑛−1
𝑖 𝑗

,
∑
Δ1

𝑖 𝑗
𝐵𝑛−1
𝑖 𝑗
],

where the 𝐵𝑛−1
𝑖 𝑗

are triangular Bernstein polynomials [Farin 1986].

Due to their non-negativity,

∑
Δ
0/1
𝑖 𝑗
𝐵𝑛−1
𝑖 𝑗

is a convex combination

of the 0/1-vectors, and therefore contained in the sector 𝑟0 or 𝑟1,

respectively. The counterclockwise angle 𝜃 from the Jacobian’s first

to its second column vector is thus 0 < 𝜃 < 𝜋 , thus det 𝐽𝜏 > 0. □

A variant of this, with less direct proof, was noted in [Vavasis

2003].

The curved Bézier triangle from Sec. 3.3.1 satisfies the premise of

the proposition: Each 0-vector is either one of the curve’s control

vectors 𝒔𝑖 or parallel to the chosen curve axis 𝒅. They are all con-

tained in a sector spanned by 𝒔+ and 𝒔− (with a angle 𝛼 < 𝜋 by the

premise that the curve is guardable (i.e., 𝒅T𝒔𝑖 > 0). Each 1-vector is

one of the vectors 𝒒𝑖 − 𝒑𝑖 with 0 ≤ 𝑖 ≤ 𝑛 − 1, or parallel to 𝒒0 − 𝒑0.

By construction (strict containment in cones ∨𝑖 , cf. Sec. 3.3.1) these
vectors are contained in the interior of the sector spanned by 𝒔+ and
−𝒔− (with angle 𝛽 = 𝜋 − 𝛼).
For the straight-edge triangle from Sec. 3.3.2 the case is particu-

larly simple: all 0-vectors are parallel to 𝒃 − 𝒂 while all 1-vectors are

not parallel to 𝒃 − 𝒂 and pointing to the left of it by construction.

𝒑00

𝒑40

𝒑04

𝑟0

𝑟1

Fig. 12. 0-vectors (blue) and 1-vectors (yellow) of a quartic 2D Bézier tri-

angle’s control net. On the right the minimal sectors 𝑟0 and 𝑟1 they are

contained in are shown; in this example the sectors are not disjoint, so

Prop. 3.9 cannot be used to show regularity in this case.

3.7 Numerical Considerations

When, instead of the usual 2-norm, employing the 1-norm (for curve

width and axis computation, normal vector normalization) all arith-

metic operations in our algorithm are rational. As a consequence,

the algorithm can be carried out using exact rational number types,

e.g. [Granlund et al. 2019], to guarantee success and valid output

not just in theory but for an actual implementation.

Of course in practice, using standard (double precision) floating

point numbers can be desirable, for speed and for interoperability

(when it comes to representing the method’s output for further use).

One option is to use exact predicates only (for envelope intersection

tests, polygon triangulation) but inexact constructions, i.e., standard

floating point numbers represent control and guard points. Possible

numerical issues in extreme cases are: curve bisectionmay introduce

numerical error (in the computed sub-curve control points) that may

lead to sub-curves that violate one of the three assumptions stated

in Sec. 3.1, and control points computed for the Bézier triangles

may be numerically coincident. However, even such challenging

configurations as the very sharp corner in Fig. 19 are still handled

correctly by an implementation following this principle.

Another option is executing the entire algorithm with exact con-

structions and only in the end converting (e.g., rounding) the output

to standard floating point numbers. Performing the conversion in

such a way that regularity is provably preserved in any case is a chal-

lenge: already in the linear case the analogous structure preserving

geometric rounding problem is an (NP-complete) issue [Milenkovic

and Nackman 1990]. Note that these are fundamental and general

issues not particular to our method.

4 MESH OPTIMIZATION

Themesh generated by our method described in the previous section

conforms with the prescribed domain curves, and its triangular

elements are regular by construction. The quality of this mesh, in

terms of element shape, geometric map distortion, and grading, is

uncontrolled, cf. Fig. 2e. We can now apply geometrical as well

as combinatorial mesh optimization operators to improve these

gradual quality aspects, while strictly preserving the established

hard validity properties of regularity and conformance.
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For the purpose of mesh optimization we make use of previously

proposed techniques, following a mesh improvement strategy like

the one recently applied in [Hu et al. 2019, 2018]. It is based on two

principles, for combinatorial and geometrical mesh improvement.

• On the combinatorial side, local mesh modification operators

(edge flips, edge splits, edge collapses) are applied, which have

already proven their effectiveness in linear remeshing sce-

narios [Botsch and Kobbelt 2004; Freitag and Ollivier-Gooch

1997; Hoppe et al. 1993; Kobbelt et al. 2000].

• On the geometrical side, a continuous optimization of the ver-

tex and control point positions is performed, directly driven

by a distortion objective evaluated on the triangles’ geometric

maps [Fu et al. 2015; Hormann and Greiner 2000]. Preserva-

tion of regularity is ensured by explicitly testing for violations

[Hernandez-Mederos et al. 2006] in the optimization’s line

search.

We found a few changes to this strategy to be beneficial for our

scenario. The particularity of this scenario is the fact that the initial

mesh is generated with a strict focus on regularity, not on element

quality (in terms of aspect ratios, sizing, etc.). The optimization thus

may have to start from meshes with highly distorted elements of

strongly varying sizes. Our changes allow this to be handled more

efficiently. Further details are modified to support all edges being

curved, instead of only the curve-conforming edges.

Because our contribution is not in the overall mesh optimization

strategy, we restrict ourselves to briefly describing and discussing

these changes and clarifying potential ambiguities in the follow-

ing. For the sake of self-containedness and clarity we describe the

strategy in its entirety in Appendix C.

4.1 Geometric Optimization

To optimize control point positions, we employ second-order opti-

mization. Newton steps are applied globally to a conformal distor-

tion objective 𝐸
conf

= (Σ2 + 𝜎2)/Σ𝜎 (with singular values Σ, 𝜎 of

the Jacobian) defined in terms of all free control points’ positions.

To obtain a positive semi-definite Hessian we make use of compos-

ite majorization [Shtengel et al. 2017] based on a convex-concave
decomposition, detailed in Appendix A. Due to the higher-order

setting, integration is performed using quadrature, cf. Appendix B.

In this setting, all edges are free to curve if this serves distortion

reduction. If, however, having straight edges away from the domain

curves (as in [Hu et al. 2019]) is of benefit for an application, this is

easily achieved: as our initial mesh has straight edges away from the

curves, we simply need to preserve this. To this end, the respective

edge and facet control points are expressed as fixed linear combina-

tions of the variable vertex control points, such that only initially

curved edges have the ability to deform freely during optimization.

4.2 Combinatorial Optimization

We briefly clarify the details of the local meshmodification operators

that are relevant for regularity preservation.

Edge Split. An edge is split by bisecting the (one or two) adjacent

triangles using Bézier triangle bisection [Farin 1986], which yields

control points for the new triangles. These again define regular

Fig. 13. Flip and collapse operators for local mesh modification. The red

dots indicate control points (here for the cubic case) whose coordinates

need to be set. On the right the special case of collapsing along a domain

curve (blue) is illustrated.

maps by construction: per triangle, the two new geometric maps

differ from the former one by an affine domain transformation only.

Edge Collapse & Flip. In order to maintain conformance, edges rep-

resenting domain curves are never flipped, vertices representing do-

main curve endpoints are never collapsed, and vertices in the interior

of domain curves are only collapsed along edges on domain curves.

Furthermore, in contrast to the linear case, where these operations

come without any geometric degrees of freedom, positions for the

control points associated with the triangles affected by the operation

need to be chosen. We start with a quasi-uniform distribution, i.e.,

except for the control points shared with adjacent unaffected trian-

gles (whose positions are preserved in order to preserve continuity)

for each triangle with corner points 𝒂, 𝒃, 𝒄 we set 𝒑𝑖 𝑗 =
𝑘
𝑛 𝒂+

𝑖
𝑛𝒃+

𝑗
𝑛 𝒄

for all free control points (red in Fig. 13). A special case occurs when

collapsing an edge on a domain curve; in this case two adjacent

edges on the same domain curve, 𝒄 ( [𝑡0, 𝑡1]) and 𝒄 ( [𝑡1, 𝑡2]), are re-
placed by one, 𝒄 ( [𝑡0, 𝑡2]), as illustrated in Fig. 13 right. Accordingly,

the control points associated with this edge are set to the control

points of the Bézier curve 𝒄 ( [𝑡0, 𝑡2]).
If the map defined by these control points cannot be certified reg-

ular [Hernandez-Mederos et al. 2006], the collapse or flip operation

is considered illegal, and is not performed. More involved strategies

to determine control points (such as attempted untangling, cf. Ap-

pendix 4.2) proved to not provide benefits in the overall process.

The next iteration of geometric mesh improvement will take care of

optimizing the initial control point positions for low distortion.

4.3 Mesh Gradation

The mesh improvement strategy is driven by a target edge length.

Uniformly sized meshes are obtained by prescribing a globally con-

stant target edge length 𝑙 . Alternatively, one can specify a predeter-

mined, spatially varying sizing field, or adapt it, following [Hu et al.

2018], automatically in a dynamical manner depending on element

quality, so as to obtain graded meshes, cf. Fig. 23.

When the mesh is initially of very low quality, verbatim appli-

cation of the latter strategy can lead to the mesh getting highly
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Fig. 14. Bézier triangles with one prescribed guardable curved edge. The underlying map, visualized here using several barycentric iso-curves (blue), is regular

by construction. Most curves and their Bézier triangles shown here are cubic (the practically particularly relevant case); the two rightmost cases are of order 7.

overrefined in the early iterations, before ultimately being coars-

ened again—strongly slowing down the optimization due to the

high intermediate mesh complexity. We therefore deviate in the

following details:

• Instead of using a constant distortion threshold to decide

whether the local target edge length is increased or decreased,

we use a threshold that tightens in the course of optimization.

We start with the maximum distortion of the initial mesh

as threshold, which is then halved after each iteration of

optimization.

• The local target edge lengths are updated after instead of

already during one iteration.

• Instead of requiring all collapse and flip operations to, in ad-

dition to serving sizing improvement, monotonically reduce

distortion, we allow them to be performed as long as the

(intermediately potentially higher) distortion stays below a

bound. We use the above dynamic threshold as this bound.

5 RESULTS

In this section we illustrate the proposed algorithm’s behaviour and

demonstrate its characteristics on a variety of example inputs.

5.1 General Overview

In Fig. 14 we demonstrate, on a variety of individual guardable

curves, what the regular guarding Bézier triangles commonly look

like. The geometric maps are visualized using barycentric iso-curves.

As guaranteed by the proven regularity by construction, two iso-

curves of the same parametric direction never intersect. Notice that,

in contrast to some previous approaches, we do not need to compute

and split at curve inflection points, or to limit the total curvature

per curve piece to a small amount.

In Fig. 15, by virtue of the method’s support of arbitrary order, we

demonstrate the handling of a curve of order 10 by our algorithm. In

stage (1) (as defined in Sec. 3.4), the curve was split into 9 guardable

curves, in stage (2) they were split into a total of 17 curves because

their envelopes were intersecting, in stage (3) the rest of the domain

was triangulated. The result is shown on the right in the figure.

In Fig. 16 the handling of a complex spiral-like arrangement

of cubic curves, exhibiting a wide range of shapes and curvature

profiles, is shown. The proposed algorithm constructs a regular

initial curved mesh, which can be used as valid starting point for

mesh improvement and optimization methods.

In Fig. 17 we demonstrate that besides domain boundary curves

also interface curves, feature curves, branch points, and holes (i.e.,

non-simply-connected domains) are naturally handled by ourmethod.

Fig. 15. Our construction supports arbitrary order. Here an example of a

single decic (degree 10) curve is shown, meshed in a conforming way using

triangles of order 10. Shown is the initial mesh without optimization. The

blue curves are barycentric iso-curves of the regular geometric maps, shown

here for visualization.

Fig. 16. Meshing of a complex spiral-like arrangement of 411 cubic curves.

Top left: initial triangulation with regular triangle elements; the curves

were split into 1,043 pieces to reach a state of non-intersecting envelopes.

Starting from this initial state, the mesh was improved through incremental

regularity preserving remeshing operations towards three different user-

specified target edge lengths. On the top right, notice that formerly split

curve segments may be recombined (via edge collapses, cf. Sec. C.2) in this

process. The inset blow-up (100×) shows how the narrow configuration in

the center is handled properly.
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a) b)

c) d)

Fig. 17. Domain boundary curves (red), interface curves (yellow), and feature

curves (green), including branch points and holes, are naturally handled by

our method. a) initial regular mesh. b) improved mesh, large target edge

length. c) improved mesh, shorter target edge length. d) visualization of

geometric maps using iso-curves.

Fig. 18. Meshing of the triangular regions from Fig. 3 that, as a whole, do not

admit a regular geometric map. Left: initial mesh. Center: initial mesh with

parametric iso-curves (blue). Right: simplified through mesh optimization

with large target edge length.

In Fig. 18 the meshing of the regions from Fig. 3 is shown. In the

course of our algorithm the domain is suitably subdivided, achieving

a regular conforming result with multiple triangular elements.

In Fig. 19 we exemplarily demonstrate that the proposed method

is able to properly handle corners with extremely small angles, in

this case 10
−30

degrees. This is likely of low practical relevance, but

illustrates the method’s solid foundation.

In all cases the regularity of the produced meshes’ elements was

verified via a positive lower bound on the Jacobian determinant

[Hernandez-Mederos et al. 2006], computed using exact arithmetic.

5.2 Random Domain Curves

For further empirical verification of the proposed method, we ap-

plied it to four datasets (A, B, C, D) with different characteristics,

Fig. 19. Two curves forming an angle of just 10
−30

degrees. The proposed

method reliably meshes such very sharp corners. Here the two curves were

guarded by 204 increasingly small triangles each. The initial mesh (of the

curves’ convex hull) is shown, with guarding triangles highlighted in blue.

each with 1000 randomly generated domain curve arrangements.

Each exemplar in these datasets has the following characteristics:

(A) 50 curves forming a closed 𝐶0
domain boundary loop with

corners.

(B) 50 curves forming a closed𝐶1
domain boundary loop without

corners.

(C) 100 isolated random curves, spread uniformly over a rectan-

gular domain.

(D) around 100 curves forming a curve network, generated by

intersecting random curves.

In Fig. 20 we show the resulting mesh (initial and optimized) for

one case from each dataset for illustration of these characteristics.

In Table 1 statistics for test runs of two implementations of our

algorithm on these datasets are reported. These implementations

differ in terms of numerics (cf. Sec. 3.7): the Exact version makes

use of exact rational numbers [Granlund et al. 2019] throughout,

while the Float version relies on standard double precision numbers

for coordinate representation (of control points, guard points, mesh

points) and exact predicates for intersection tests. Code containing

both implementations (Exact and Float) and the four datasets are

available on the authors’ websites.

Table 1. The Exact version (top rows) successfully processes all test cases

from the random datasets. Success was verified by computing a lower bound

on the Jacobian determinant; it was strictly positive for every element in

every case. The distribution of the Jacobian determinant values is shown in

Fig. 21. For the Float version (lower rows), in a few cases some subdivided

envelopes or final triangles became numerically degenerate such that no

control points forming regular elements could be obtained in the final steps.

Dataset: (A) (B) (C) (D)

E
x
a
c
t

Failure 0 0 0 0

Success 1000 1000 1000 1000

F
l
o
a
t

Failure 0 2 0 13

Success 1000 998 1000 987

Total 1000 1000 1000 1000
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Fig. 20. Examples from the randomly generated test datasets. The left

column shows the initial meshes (Sec. 3), the right column a uniformly

remeshed version (Sec. C). From top to bottom: dataset A (𝐶0
domain with

sharp corners), dataset B (𝐶1
domain), dataset C (isolated curves) and,

dataset D (curve networks).

5.3 Clipart Dataset

The dataset used for testing by [Hu et al. 2019] contains around 20K

cubic curve configurations from clipart files. This data is quite messy:

there are degenerate curves, intersections, overlaps, duplicates, zero-

angles. We applied the clean-up routine proposed in the above

work and furthermore approximated occasional rational curves by

polynomial curves. Irregular curves (whose first or last two control

points coincide) are not explicitly treated by this clean-up procedure

Fig. 21. Logarithmic histogram of scaled-Jacobian values (horizontal axis),

aggregated over all elements of the initial result meshes for the datasets

of Sec. 5.2. As guaranteed by our algorithm these values, while initially

occasionally small, are strictly positive (here > 10
−9

in any case), such that

the meshes are valid starting points for regularity preserving optimization.

Table 2. As expected, the Exact version processes the regular inputs from

the clipart dataset without issues. With the Float version issues due to

rounding errors can occur in the algorithm’s steps: in step (1) curve bisection

can lead to irregular or intersecting sub-curves; in step (2) this can be the

case as well; in step (3) degenerate envelopes can cause ill-defined polygons

that are to be triangulated; in step (4) the regular control point computation

according to Sec. 3.3.1 can be hampered by numerical degeneracies.

Clipart Dataset Float Exact

Step (1) Failure 0 0

Step (2) Failure 38 0

Step (3) Failure 32 0

Step (4) Failure 23 0

Success 10,613 10,706

Total 10,706 10,706

and remain in almost half the cases
2
. We applied our algorithm to

the subset of regular exemplars. Statistics are reported in Table 2.

5.4 Curve Conformance

To the best of our knowledge, among general methods for the genera-

tion of higher-order meshes with polynomial elements, the proposed

method is the first to offer guarantees concerning curve confor-

mance and regularity in combination. To demonstrate the benefit,

in Fig. 22 we exemplarily show several cases where a recent method

[Hu et al. 2019] for higher-order meshing of curved domains shows

limitations: in these cases it can output regular but non-conforming,

or conforming but irregular elements. By construction, our method

yields regular conforming elements also in these cases.

5.5 Timing

In Table 3 we give some insight into the runtime of our (single-

threaded) implementation of the algorithm from Sec. 3.4.

The expectation of a time complexity roughly linear in the number

of curves for steps (1), (4), and (5) is confirmed.

2
The fact that the meshing method from [Hu et al. 2019] can yield regular meshes for

at least some of these turns out to be merely due to numerical inaccuracies introduced

by the Bézier-to-Lagrange conversion that this method employs, which quite often

turns truly irregular curves into slightly different nearly irregular curves.
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Fig. 22. Top row: examples of curve conformance errors of a previous curved meshing method [Hu et al. 2019] (using code published by the authors, on files

219104, 222226, 245616, 183643, and 169618 from their clipart dataset). Shown are single triangle excerpts from larger result meshes. Prescribed domain curves

are drawn in red, while actual triangle element edges corresponding to these curves are drawn on top in very light gray-blue; hence, any visibility of red color

indicates non-conformance. In these cases, a conforming regular map for the triangular region created by the mesher either did not exist or could not be found.

Second row: regular results created by our proposed algorithm at the exact same curve regions; due to strict conformance by construction, no red is visible.

Bottom row: the same region after mesh optimization; conformance is preserved.

In step (2), which is dominated by intersection tests between

envelopes, we employ an interval-tree for the envelopes’ bounding

boxes as search structure for potential intersections.

In our current implementation step (3) (linear triangulation of

the remaining domain) is performed using the Triangle library (in

our Float version) or using CGAL (in our Exact version).

Table 3. Timings of our algorithm (Sec. 3.4) in milliseconds. Obtained by

averaging over runs on hundreds of input domains (taken from the clipart

dataset) containing ∼10, ∼100, and ∼1000 curves (±10%), respectively.

Float Exact

#Curves= ∼10 ∼100 ∼1000 ∼10 ∼100 ∼1000
Step (1) 0.4 7.4 82.6 2.3 26.0 228.8

Step (2) 21.1 419.2 5903.7 20.8 411.3 6010.6

Step (3) 1.1 10.7 89.5 11.3 166.0 1246.7

Step (4)+(5) 0.4 3.4 30.8 19.6 285.5 2418.4

Total 23.0 440.7 6106.6 54.0 888.8 9904.5

5.6 Choice of 𝜇

Choosing a large value for the parameter 𝜇 leads to overly large

envelopes, requiring more bisection, leading to unnecessarily dense

initial meshes and longer run times. Very small 𝜇 can imply nearly

irregular elements (very small det 𝐽 ), which—in a non-exact arith-

metic implementation—can cause numerical degeneracies. This is

reflected in the statistics shown in the table below, computed over

1000 input configurations from the dataset from Sec. 5.3: shown

is the total number of triangle elements created (summed over all

inputs) and the percentage out of these elements that are degener-

ate (or inverted) when represented using standard double precision

floating point numbers. It can be observed that the choice is rather

uncritical in the range between 10
−1

and 10
−3
. We use 10

−2
by

default and in all other experiments.

𝜇 = 10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

Total elements 1897𝐾 1416𝐾 1355𝐾 1353𝐾 1352𝐾 1352𝐾

Degen. elements 0 0 0 0.04% 0.14% 0.17%

6 LIMITATONS & FUTURE WORK

Various generalizations and extensions of the proposed approach

will be interesting objects for future investigation.

For instance, adding support for rational curves in addition to

polynomial curves, i.e., Bézier curves with an additional weight per

control point, is an obvious avenue for future work. In this way

practically important non-polynomial curves like arcs and general

conics could be supported as input domain curves.

Likewise, generalization to the three-dimensional setting, i.e.,

higher-order tetrahedral meshes conforming to curved piecewise

polynomial or rational domain surfaces, is of interest. A major chal-

lenge will be the construction of regular geometric maps for this

case.

Depending on the use case, smoothness of the geometric maps

across edges (beyond the 𝐶0
-continuity ensured by our construc-

tion) can be of interest, e.g., in the context of isogeometric analysis

based on spline spaces. There may be ways to achieve this in our

framework using macro-element schemes on top [Jaxon and Qian

2014]. The key issue will be ensuring regularity at the same time.

Performance improvements can potentially be achieved in a va-

riety of ways. One tuning option is to perform bisections not at

1

2
but at points carefully selected to reduce the required number

of bisections. Another option is to investigate different, perhaps

tighter envelope definitions. Prop. 3.9, the proof of regularity based

on control vectors, is quite generic and could be applied to modified

control point constructions that possibly lead to less refinement,

better elements, and faster convergence.

The focus herein is on guaranteeing regularity and conformance.

In the field of subsequent mesh optimization interesting challenges

remain, in particular towards quality guarantees, angle bounds, etc.

On a minor note, a general construction of regular geometric

maps for a straight-edge triangle with non-uniform control point

distribution along more than one of its edges would avoid the need

to split certain edges in step (3) of the algorithm in Sec. 3.4.
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A MAJORIZATION

Using the following definitions of ℎ and 𝑔, the objective 𝐸
conf

can

be written as 𝐸
conf

= ℎ ◦ 𝑔:

ℎ(𝑢, 𝑣) = 𝑢2

𝑣
and 𝑔 = (∥ 𝐽𝜏 ∥, det(𝐽𝜏 )).

Let 𝐽𝑖 𝑗 denote the entries of the Jacobian 𝐽𝜏 , then the function 𝑔

can be further decomposed as 𝑔 = 𝑔+ + 𝑔− with

𝑔+ =
(
∥ 𝐽𝜏 ∥,

1

4

[
(𝐽00 + 𝐽11)2 + (𝐽01 − 𝐽10)2

] )
,

𝑔− =

(
0 ,−1

4

[
(𝐽00 − 𝐽11)2 + (𝐽01 + 𝐽10)2

] )
.

Note that the functions ℎ and 𝑔+ are convex, while 𝑔− is concave. Us-
ing this convex-concave decomposition, a convex majorizer of 𝐸

conf

with a positive semi-definite Hessian can be defined as described in

[Shtengel et al. 2017, Eq. (9)], making it suitable for efficient second

order Newton-type optimization.

A.1 Jacobian

To obtain the Jacobian 𝐽𝜏 of a Bézier triangle’s geometric map 𝜏 , it

is convenient to consider 𝜏 as a composition of two maps, 𝜏 = 𝜙 ◦𝜓 ,
via a right triangle 𝑅 with unit length legs (coincident with the

coordinate axes 𝑢, 𝑣). The map 𝜓 : △ → 𝑅 is a simple affine map,

while 𝜙 : 𝑅 → R2 is a Bézier map of degree 𝑛.

The Jacobian of the Bézier map 𝜙 is easily built from the partial

derivatives by 𝑢 and 𝑣 :

𝐽𝜙 (𝑢, 𝑣) =
[ 𝜕𝑥

𝜕𝑢 (𝑢, 𝑣)
𝜕𝑥
𝜕𝑣 (𝑢, 𝑣)

𝜕𝑦
𝜕𝑢 (𝑢, 𝑣)

𝜕𝑦
𝜕𝑣 (𝑢, 𝑣)

]
,

where the partial derivatives [Farin 1986] are given by

𝜕𝑥

𝜕𝑢
(𝑢, 𝑣) = 𝑛

∑
𝑖+𝑗+𝑘=𝑛−1

(𝑥 (𝑖+1) 𝑗𝑘 − 𝑥𝑖 𝑗 (𝑘+1) )𝐵𝑛−1𝑖 𝑗𝑘
(𝑢, 𝑣),

𝜕𝑥

𝜕𝑣
(𝑢, 𝑣) = 𝑛

∑
𝑖+𝑗+𝑘=𝑛−1

(𝑥𝑖 ( 𝑗+1)𝑘 − 𝑥𝑖 𝑗 (𝑘+1) )𝐵𝑛−1𝑖 𝑗𝑘
(𝑢, 𝑣),

and analogously for 𝑦, where (𝑥𝑖 𝑗𝑘 , 𝑦𝑖 𝑗𝑘 ) = 𝒑𝑖 𝑗𝑘 are the triangle’s

control points. The constant Jacobian of affine map𝜓 : △ → 𝑅 is

𝐽𝜓 =

[
1 −1/√3
0 2/√3

]
.

The Jacobian of 𝜏 then is 𝐽𝜏 (𝑢, 𝑣) = 𝐽𝜙 (𝑢, 𝑣) 𝐽𝜓 .

B QUADRATURE

The objective 𝐸
conf

(more precisely: its majorizer) is numerically in-

tegrated over the higher-order triangles using a quadrature scheme

[Witherden and Vincent 2015]. Let 𝜉𝑖 , 𝑖 ∈ 𝑄 = {1, . . . , 𝑛}, denote the
barycentric coordinates of the scheme’s 𝑛 quadrature points, and

𝑤𝑖 the associated relative weights. Quadrature then yields

𝐸𝑡
conf
≈ 𝐴𝑡

∑
𝑖∈𝑄

𝑤𝑖𝐸conf (𝑡, 𝜉𝑖 ) . (1)

for a triangle 𝑡 with area 𝐴𝑡 .

C MESH OPTIMIZATION DETAILS

We spell out the details of a mesh optimization strategy that can be

applied to improve the regular meshes generated by our algorithm

from Sec. 3.4 in the following.

C.1 Geometric Optimization

In order to promote equilateral elements, we perform a variational

optimization of control point positions with the objective of ex-

plicitly minimizing distortion of the geometric maps 𝜏𝑖 (defined on

equilateral reference triangle △). To avoid bias towards a particu-

lar element size, we employ a scale invariant conformal distortion

measure [Hormann and Greiner 2000], computed from the map’s

Jacobian 𝐽𝜏 (or its singular values Σ, 𝜎):

𝐸
conf

= (Σ2 + 𝜎2)/Σ𝜎 = tr(𝐽⊺𝜏 𝐽𝜏 )/det(𝐽𝜏 ). (2)

Variants of this have been used for mesh optimization before, e.g.

in [Hu et al. 2019]. For efficiency, as in [Mandad and Campen 2020],

we employ second-order optimization, using global Newton steps

with composite majorization [Shtengel et al. 2017] based on a convex-
concave decomposition of 𝐸

conf
, cf. Appendix A. Integration of 𝐸

conf

over the mesh is performed using quadrature, cf. Appendix B.

During optimization, preservation of regularity is ensured by

performing a (conservative) injectivity test [Hernandez-Mederos

et al. 2006] on the Bézier triangles in the Newton method’s line

search, and curve conformance is preserved by constraining the

corresponding control points: vertices on end points of the input

domain curves remain fixed; vertices in the interior of such a curve

are allowed to slide along the curve only (i.e., derivatives for such a

vertex control point on curve point 𝒄 (𝑡), as well as for the curved
edge control points, are taken w.r.t. parameter 𝑡 instead of 𝑥,𝑦).
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C.2 Combinatorial Optimization

Like in a variety of previous works (mostly in the linear setting), e.g,

[Botsch and Kobbelt 2004; Cardoze et al. 2004; Freitag and Ollivier-

Gooch 1997; Hoppe et al. 1993; Hu et al. 2019; Kobbelt et al. 2000], we

additionally perform combinatorial changes to the mesh connectiv-

ity. In particular, splits, collapses, and flips of edges are performed

following a certain schedule and under certain conditions. Geo-

metric and combinatorial optimization are performed alternatingly,

until a termination criterion (sufficient mesh quality or maximum

number of iterations) is met.

We make use of an edge-length driven strategy, which can be

traced back at least to [Suzuki et al. 1998]. Like recent work on

mesh optimization [Hu et al. 2019] we adopt the schedule proposed

by [Botsch and Kobbelt 2004; Kobbelt et al. 2000], leading to the

following algorithm. In this, the length of an edge between vertices

𝑣 and 𝑤 is denoted ℓ (𝑣,𝑤); we can approximate it using a linear

mesh proxy (i.e. ℓ (𝑣,𝑤) = ∥𝒑𝑣 −𝒑𝑤 ∥) as in previous work [Cardoze

et al. 2004; Hu et al. 2019].

Initialization: Assign a target edge length 𝑙 to each vertex. For an

edge between vertices 𝑣 and𝑤 let 𝑙 (𝑣,𝑤) = 1

2
(𝑙 (𝑣) + 𝑙 (𝑤)).

(1) Split long edges: split each edge (𝑣,𝑤) with ℓ (𝑣,𝑤) > 4

3
𝑙 (𝑣,𝑤),

inserting new vertex 𝑧 at its midpoint. Set 𝑙 (𝑧) = 𝑙 (𝑣,𝑤).
(2) Collapse short edges: collapse each collapsible edge (𝑣,𝑤) with

ℓ (𝑣,𝑤) < 4

5
𝑙 (𝑣,𝑤).

(3) Flip edges: flip each flippable edge if that reduces the deviation
of vertex valences from their optimum in a least squares

sense.

The optimal vertex valence is 6 for interior vertices, 4 for general

boundary vertices, and between 2 and 6 for corner boundary vertices

(depending on the corner’s angle).

An edge is considered “collapsible” or “flippable” if the implied

geometric maps, defined as in Sec. 4.2, are regular. We note that

instead of using the quasi-uniform control point distribution defined

in Sec. 4.2, one could employ more sophisticated techniques that

attempt to more flexibly find regular maps. In particular, one could

instead try to untangle initially irregular configuration, for instance

using a log(− det 𝐽𝜏 ) objective [Toulorge et al. 2013]. We explored

this option, but found it to mostly slow down the optimization

process while ultimately not having a noticeable positive effect

on the final result. A likely reason is that operations that lead to

elements that are irregular despite part of their control points being

in a uniform configuration are not very likely to be beneficial for

mesh quality anyway.

Before proceeding with a global geometric optimization based on

𝐸
conf

(Sec. C.1), it proved beneficial (speeding up the overall process)

to perform a local optimization of 𝐸
conf

per region affected by a

local mesh modification operator.

Monotonicity. While such a purely edge length driven strategy

works very well in the linear case [Botsch and Kobbelt 2004], in

the higher-order case it can lead to nearly degenerate intermediate

states, having adverse numerical effects on subsequent optimization

steps. One can prevent this by discarding flips and collapses that do

not strictly improve the mesh quality (as measured by 𝐸
conf

) [Hu

et al. 2019]. We, however, found that in the higher-order setting,

Fig. 23. Left: remeshing with uniform target edge length. Center: remeshing

with uniform target edge length, preserving straightness of black edges.

Right: graded remeshing with adaptive edge length, with 𝐸
conf

< 3 every-

where.

with curved elements, restricting to strictly monotonic progress

leads to unfavorable behavior. In particular if the initial mesh is of

very low quality, the early removal of small or tiny elements through

edge collapses often requires going through intermediate states with

lower quality elements. Therefore, we allow non-monotonic but

bounded behavior: an operation can be performed even if it increases

𝐸
conf

, as long as 𝐸
conf

< 𝐸
limit

for some limit value. This limit is

incrementally tightened during optimization. We initialize 𝐸
limit

as

max𝐸
conf

, i.e., the maximum over the entire mesh, and halve it after

each iteration of the combinatorial optimization.

C.3 Mesh Gradation

The above algorithm, with globally constant target edge length 𝑙 ,

leads to uniformly sized meshes. Alternatively, one can specify a

predetermined, spatially varying sizing field, or adapt it, following

[Hu et al. 2019, 2018], automatically in a dynamical manner depend-

ing on element quality, cf. Fig. 23. This is achieved by specifying a

target edge length range [𝑙min, 𝑙max], initializing 𝑙 = 𝑙max for each

vertex, and updating the per vertex values after each iteration of

combinatorial mesh optimization as follows:

• For each bad vertex 𝑣 : 𝑙 (𝑣) ← 1

2
𝑙 (𝑣) clamped to [𝑙min, 𝑙max].

• For each good vertex 𝑣 : 𝑙 (𝑣) ← 3

2
𝑙 (𝑣) clamped to [𝑙min, 𝑙max].

A vertex is bad if it has an adjacent triangle 𝑡 with max𝑡 𝐸conf >

𝐸
thres

; otherwise it is good. Using a constant 𝐸
thres

(as in previous

work [Hu et al. 2018]) proved to be suboptimal in our scenario:

when the mesh is initially of very low quality, it will be strongly

refined in the first iterations, before ultimately being coarsened

again—unnecessarily slowing down the optimization due to the high

intermediate mesh complexity. Initializing 𝐸
thres

as max𝐸
conf

, i.e.,

themaximumover themesh, and halving it after each iteration of the

combinatorial optimization proved to provide a major improvement

in this regard. Note that theminimally possible value of 𝐸
conf

is 2 (for

an ideal equilateral element), therefore 𝐸
thres

must not be reduced

below a somewhat larger value. Clamping to a value of 4 offers a

good balance; clamping to 3 commonly more than doubles the mesh

complexity while reducing hardly reducing 𝐸
conf

on average.

We point out that we update the 𝑙-field after all combinatorial

operations are performed instead of immediately after step (1) (as

described in [Hu et al. 2018]). When starting from a very low-quality

state the latter can lead to significant overrefinement.
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