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Abstract

We describe a method to simplify a 2D triangle mesh through decimation while preserving its quality by
means of maintaining a strict lower bound on inner angles. Conformance to boundaries, interfaces, and
feature constraints is preserved as well. Multiple options and strategies for the choice of local decimation
operators and for the settling of geometric degrees of freedom are proposed and explored. A systematic
evaluation leads to a final recommendation for the most beneficial approach. The resulting method enables
the efficient generation of more parsimonious meshes than those obtained from existing methods, while
exhibiting the same quality in terms of worst element shape, as is relevant, for instance, in finite element
analysis and numerical simulation.
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Figure 1: Left: Mesh generated using Delaunay refinement (Ungér, 2004; Shewchuk, 1996) with a lower angle bound of 30°.
Right: More parsimonious mesh generated by our simplification method, respecting the same bound, but consisting of just
10120 instead of 17580 triangles. The histograms show the distribution of inner angles.

1. Introduction

The discretization of domains by means of meshes, in particular triangles meshes, is a cornerstone of
numerous application areas. Simulation based on the finite element method (FEM) and related techniques
is a prime example. The quality of the mesh is long-known to have a fundamental effect on performance
and other important, theoretical as well as practical, aspects (Zlamal, 1968).

The quality of a mesh is a function of the quality of its individual elements (as well as further aspects
like geometric domain approximation error). An important observation is that often not the average but
rather the worst element is determinative of a mesh’s overall quality and suitability for numerical methods.
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In particular, the maximum eigenvalue of the stiffness matrix (and thereby its condition) is dominated by
the single worst element (Shewchuk, 2002b; Kim et al., 2019; Fried, 1972), negatively affecting stability,
efficiency, and convergence in practice (Sastry et al., 2014). Therefore major efforts have been spent to
develop mesh generation methods that produce meshes with a focus on the quality of the worst contained
element.

For the case of triangle meshes for 2D domains, where the triangle’s inner angles are particularly dis-
criminative, various techniques have been proposed to generate boundary conforming meshes with a lower
bound (and by implication also upper bound) on the inner angles. Influential works include Chew (1989,
1993); Bern et al. (1994); Ruppert (1995); Shewchuk (2002a); Miller et al. (2003); Ungor (2004); Erten and
Ungor (2009); Rand (2011).

We observe that meshes resulting from such methods as well as from other sources are not necessarily
parsimonious. Typically simpler meshes (with a smaller number of elements) do exist, conforming to the
same domain boundary, that have exactly the same quality in terms of minimum inner angle, cf. Figure 1.
In a sense, the meshes are not tight on the lower bound; most inner angles are far from this bound. While
parsimony may not be a relevant objective in some applications, in others it is; one recent example of a use
case that, as an ingredient, asks for an as simple as possible constrained triangulation with a lower angle
bound is the work in Mandad and Campen (2021).

1.1. Contribution

Based on this observation, we consider the problem of angle-bounded 2D triangle mesh simplification. We
describe a method that takes as input a lower angle bound 6*, a piecewise-linear domain boundary (possibly
including internal feature or interface curves), and a boundary conforming triangle mesh M whose inner
angles are larger than 0* (with possible local exceptions). It outputs a mesh M’ conforming to the same
boundary, whose inner angles are still lower-bounded by 6* (with the same or less local exceptions), such
that |M’| < |M|, aiming for a low number of elements. A precise problem description follows in Section 3.

The method follows the general idea of incremental mesh decimation, as summarized by Kobbelt et al.
(1998). We propose multiple strategies for the choice of mesh modification operators (halfedge, edge, and
triangle collapses in combination with different prioritization modes) and in particular for the angle-driven
settling of geometric degrees of freedom. These are systematically evaluated so as to arrive at a general
recommendation for the most suitable approach.

2. Related Work

The topic of triangle mesh simplification or decimation has already received significant attention. Surveys
such as those by Rossignac (1997); Ciampalini et al. (1997); Cignoni et al. (1998) provide a broad overview.
Often, the focus is on the decimation of surface meshes in 3D. A pretty common objective therefore is the
minimization of approximation error relative to the surface described by the input mesh, and a multitude
of strategies to track and reduce this error in the decimation process have been proposed.

This objective, of course, is not relevant to the here addressed plane triangulation setting. Nevertheless,
some of these methods may additionally take further aspects besides geometric approximation error into
account. Kobbelt et al. (1998) describe the general framework of incremental mesh decimation, and mention
the option to preclude decimation operations that violate certain fairness criteria. In this context, Botsch
et al. (2010) concretely mention the roundness of triangles and the dihedral angles as possible criteria. These
and further criteria like limits on edge lengths and aspect ratios of triangles are implemented, for instance,
in the toolbox of Mébius and Kobbelt (2010).

The explicit consideration of inner angles in this context, however, is surprisingly rare. Li and Zhang
(2006) use as criterion, in a surface setting, that the inner angles may not exceed an upper bound. This
bound is fixed (90°). Edge collapses are used as decimation operator (cf. Section 4.1). We consider multiple
operators, use a generic bound, and in particular propose strategies to optimize vertex positions in the
process not driven by surface approximation error but in an angle-driven manner, towards the goal of
increasing the efficacy of the simplification.



Besides the approach of taking an existing mesh (from arbitrary sources) as input and simplifying it,
some techniques have been described, e.g., Erten and Ungér (2009); Tournois et al. (2008), to intervene
during the mesh generation process, in particular inside the Delaunay refinement process, modifying it such
that on average coarser meshes may be obtained (possibly at the expense of guarantees). Our approach is
agnostic to the source of the mesh or its manner of generation; it can take any mesh as input and perform
decimation, targeting any lower angle bound.

3. Problem Statement

Let us make precise the setting and the objective. First, assume the following input:

e [ is a set of line segments in the plane, defining a piecewise-linear domain boundary, and possibly
additional piecewise-linear feature curves in the domain’s interior.

e M = (V,E,T) is a triangle mesh, with vertices V, edges F and triangles T', that conforms to L, i.e.
each line segment ! € L coincides with a set of edges of M.

e 0 is a user-set parameter that defines the desired lower bound on inner angles.

Furthermore, let w(M, 8*) denote the number of angles in M that violate the bound. Based on this input,
we generate a mesh M’, by modification of M, such that

e M’ conforms to L,
o w(M',0%) < w(M,0%),
o |M'| < |M]|.

Our objective is to minimize |M’|, the number of elements in M’, which we approach in a greedy manner.
Note that the second condition above implies that if M respects the angle bound 6*, M’ does so as well. If
M partially violates it (e.g. near sharp corners prescribed by L, where this may be inevitable), M’ does not
contain any further (but possibly less) violations. Optionally, we may, even more strictly, want to prevent
each individual violation from becoming more severe.

A typical source for the input mesh M are constrained triangulation algorithms with quality guarantees,
like those mentioned in Section 1. For instance, using Delaunay refinement (Ruppert, 1995) lower angle
bounds up to 28.6° (except in the vicinity of sharp angles prescribed by the constraints L) can be guaranteed.

4. Decimation

To be able to reliably and strictly prevent any kind of violation of conformity or angle bound, we generate
M’ out of M by means of a series of constrained mesh modification operations, within the general framework
of incremental mesh decimation (Kobbelt et al., 1998). We design and constrain the operations such that
conformity and quality are preserved, while the number of elements decreases strictly monotonically.

The angle requirement is maintained by only allowing those operations that lead to meshes not violating
it. If some triangle corners form angles less than 6* already in M, we only allow improvement, i.e. an
increase, but not any further decrease of this angle. Therefore, the individual lower bound for a triangle
corner that has an angle of 5 in M is § = min(6*, #). A mesh modification operation is considered legal if
B’ > 60, where (3’ is the angle of the same corner after deformation of the triangle due to the operation.

We briefly review the employed operators in Section 4.1 and address the question of how to settle the
involved geometric degrees of freedom (the choice of vertex positions) so as to enable a large amount of
decimation in Section 4.2.

4.1. Operators

We use and explore multiple local mesh modification operators for an incremental decimation of M, as
outlined in the following.
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Figure 2: An edge collapse can be viewed as a halfedge ~ Figure 3: The collapse of a triangle (green) can be viewed as a sequence
collapse (a), followed by relocating the merger vertex of two halfedge collapses (a, b), followed by relocating the merger ver-
(b) to a new position determined by some rule. The  tex (c). The triangles whose shape changes in the process are high-
triangles whose shape changes in the process are high- lighted.

lighted.

Halfedge collapse. Fach edge e € E can be considered to be consisting of two halfedges, pointing in opposite
directions. A halfedge collapse for a halfedge h of e is a standard operation that simplifies a mesh by
conceptually merging the vertex where h originates into the vertex that h points to, as illustrated in Figure 2a.
This in particular deletes the two triangles incident to the edge e.

FEdge collapse. In an edge collapse, the two vertices of an edge e € E are merged into one vertex at a new
position. Both triangles incident to e are deleted. It can be implemented as a halfedge collapse followed by
a vertex shift, as illustrated in Figure 2. In contrast to the halfedge collapse, this operation has geometric
degrees of freedom, in form of the position of the merger vertex.

Triangle collapse. We additionally propose the use of a triangle collapse operation, merging all three vertices
of a triangle A € T into one vertex at a new position. The three triangles that are edge-adjacent to A vanish.
While an operation of this kind has been used in the early days of mesh processing (Hamann, 1994), later
work has often preferred (half)edge collapses for their finer granularity. For instance, Kobbelt et al. (1998)
“recommend to make the topological operator itself as simple as possible”, suggesting the exclusive use of
the halfedge collapse. Indeed, the effect of a triangle collapse, in terms of connectivity, can be achieved by
a sequence of two (half)edge collapses (cf. Figure 3). However, in our particular constrained setting, for the
intermediate connectivity between the two edge collapses there may not be a legal geometric state within
the angle-bounded configuration space. Especially as, in a sense, the triangle collapse operation is typically
less anisotropic than an edge collapse, we may expect it to enable additional decimation operations. As our
evaluation (cf. Section 5) shows, this is indeed the case to a certain extent.

For each of these operators, we need to define under which circumstances they are legal for which halfedge,
edge, or triangle — in the sense that the desired angle bounds as well as boundary and feature conformance
are maintained if the respective operator is applied. For the halfedge collapse this is a simple matter:

e Maintenance of angle bounds is easily checked by measuring tentative post-collapse angles of the
affected triangles (those highlighted in Figure 2 center).

e In case the to-be-collapsed vertex lies on a constraint segment [ € L, conformance is preserved if exactly
two of its incident edges, including the to-be-collapsed edge, lie on the same constraint segment [ € L.

Note that in this, angles need to be computed in a signed manner to prevent triangles from folding over.

The other operators, however, have geometric degrees of freedom; their legality depends on the choice of
the new vertex position, as it affects the inner angles of the incident triangles. In the following we propose
and discuss multiple options to settle these degrees of freedom.

4.2. Geometric Degrees of Freedom

The edge collapse as well as the triangle collapse operation have geometric degrees of freedom: the choice
of the position p of the merger vertex. Recall that for every triangle all three angles must be greater than or
equal to #. The angles of the triangles that are incident to the merger vertex depend on its position p. Let
us determine the angle-bounded kernel, the set K C R? such that p € K if and only if all incident triangles
have inner angles lower-bounded by their respective bound 6.
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(a) Halfplane through a. ) Halfplane through b. (c) Circle through a and b. ) Common intersection.

Figure 4: Fan-shaped intersection of the halfplanes and the circle.

First, consider a single incident triangle, with vertices (in counter-clockwise order) at positions a, b, p.
The edge between a and b is illustrated in Figure 4. In order to have positive inner angles, p must lie above
this edge. Furthermore, each one of the triangle’s three corners implies a constraint on the legal positions
for p:

e For the angle at a to be large enough, p must lie in the closed halfplane H' above the line passing
through a that forms a counter-clockwise angle 6 with b — a (Figure 4a).

e For the angle at b to be large enough, p must lie in the closed halfplane H" above the line passing
through b that forms a counter-clockwise angle —6 with b — a (Figure 4b).

e For the angle at p to be large enough, according to the inscribed angle theorem p must lie in the closed
disk C formed by a circle with center ¢ and radius r passing through a and b (Figure 4c). Center ¢
lies on the bisector of the edge ab, at height A, computed as

d d / d?
_ 2, & b
= Jtand n Somd h? + 1 where d=1b—al .

and 7r =

All conditions for this single triangle are satisfied if the point p lies in the fan-shaped intersection F' =
H'N H" N C of these two halfplanes and the circular disk, illustrated exemplarily in Figure 4d for the case
of § = 30°.

Let n be the number of triangles incident at the vertex. The sought angle-bounded kernel is the inter-
section K = (¢, I of the fan-shaped regions of these triangles. [n] denotes the index set {1,...,n}. Note
that K, as the mterbectlons of convex sets (halfplanes and disks), is convex. Furthermore, its boundary is
an arc-polygon, formed by line segments and circular arc segments. For the case of a triangle collapse, the
kernel K for the merger vertex is illustrated in Figure 5. Note that each edge in the triangle’s link (the nine
outer edges in Figure 5a) contributes one fan-shaped region.

Only if the position p of the merger vertex of an edge collapse or triangle collapse is chosen such that it lies
inside K, may this collapse be legal. If K is empty, the edge e or the triangle A, respectively, is generally
not collapsible. One may hypothesize that a choice far in the interior of K is beneficial compared to a
choice on or close to its boundary, because it leaves a larger gap towards the lower angle bound, potentially
leaving more flexibility for legal subsequent collapses. We consider multiple options for the choice of p in
the following, and evaluate their relative performance in Section 5.

Note that if any of the two or three vertices involved in an edge or triangle collapse lies on a constraint
from L, for simplicity we do not consider this collapse, so as to avoid multiple case distinctions and special
case handling. Instead, such vertices are left to be handled by L-constrained halfedge collapses described in
Section 4.1.



(a) Triangle and surround before the collapse. (b) All nine fans and their intersection K. (c) Possible configuration after the collapse.

Figure 5: Angle-bounded kernel (bold blue), defined as the intersection of fans (light blue), when collapsing a triangle (green).

4.2.1. Centroid

A simplistic (and computationally cheap) choice for p is the center of the edge or the triangle that is
collapsed, i.e. the average of the two or three involved vertices. If this choice implies violating angles, i.e. if
the centroid does not lie inside the angle-bounded kernel K, the collapse is considered illegal.

This simple choice is conservative: a collapse may be prohibited even if K is non-empty. The three
further (more expensive) strategies proposed in the following, by contrast, always yield some point inside
the angle-bounded kernel if it is non-empty.

4.2.2. Kernel Mean Construction

One way to choose a point inside the angle-bounded kernel K is to explicitly construct this set, and
then pick a point from it. For instance, we can compute the corners {p1,...,pr} of the arc-polygonal kernel
boundary and choose the mean p = % > pi, which — due to convexity of K — is guaranteed to lie inside.

The corners p; are exactly those intersection points of any two of the involved kernel-defining lines and
circles that lie within all of the respective closed halfplanes H and disks C, i.e. on or above the lines in
Figure 4ab and on or inside the circle in Figure 4c, respectively. A simple way for their computation therefore
is the calculation of pairwise intersections (line-line, line-circle, and circle-circle intersections), followed by
filtering out those intersection points that lie outside of any halfplane or disk.

While this simple approach has cubic run time complexity (and asymptotically more efficient incremental
convex arc-polygon clipping algorithms can be imagined), note that it is cubic in the valence n of the vertex
only, and that this valence is upper-bounded by a small constant due to the inner angle bound 6. In
particular, if the post-collapse valence exceeds 360°/6 (e.g. 12 in case of a constant bound 6 = 30°), we can
immediately conclude that K must be empty.

4.2.8. QCQP Formulation

The angle-bounded kernel K of a vertex can be characterized by a set of linear and quadratic constraints.
Let 0; + Av; for A € R, ||v;]| = 1, @ € [2n] be the lines that bound the involved halfplanes H; to their left, and
let ¢; and 7; be the centers and radii of the involved disks C; for j € [n], where n is the number of edges
of the link. Furthermore, define the lines’ normals (s;,t;) via s; = —V4y, ti = iy, and their signed distance
to the origin as u; = v;,0;; — v;;04,. Then K is defined by the following set of convex linear and quadratic
constraints:

$ipy +tipy +u; >0 Vi€ [2n] and
2 2

Tt —¢j, —cjyz—&-Qijpw—FQijpy—pmz—pr20 Vi € [n] .



A point p = (ps, py) inside K can therefore be found using a solver for quadratically constrained programs.
In particular, we can model the following problem within the QCQP class of optimization problems (Boyd
et al., 2004), that additionally aims to yield not just any point within K, but a point that is well-centered:

Maximize o (1a)
subject to  s;py +tipy +u; —0 >0 Vi€ [2n] (1b)
ri? =, — cij +2¢;,P0 + 2¢j, Dy —pt—p, 2 —6>0 Vje[n]. (1c)

Here a dummy variable ¢ is introduced that effectively measures the minimum over the signed distances
of p to the to the lines (1b) and the signed squared distances to the circles (1c) — and this minimum is
maximized. If § > 0 in the program’s solution, p is valid; otherwise K is empty.

However, distances to lines and to circles are treated differently in this formulation. For an even better-
centered solution point p, we can define a modified QCQP:

Maximize ¢ (2a)
subject to  (sips +tipy +u)> — 3 >0 Vi€ [2n] (2b)
% — ng;2 - cjy2 +2¢;,p0 + 2¢j, Py — P’ —p, =58>0 Vjen| (2¢)
SkPx +tepy +ur >0 Vk € [2n] . 2d)

In this, distances to circles as well as distances to lines are taken into account consistently in squared form;
notice the difference between (2b) and (1b). The additional constraints (2d) ensure that p lies on the proper
side of each line constraint; they are necessary because the squared distance in (2b) is unsigned.

4.2.4. Smooth Quasiconcave Mazximization

The strategy in the previous section maximizes the minimum (squared) distance of p to the lines and
circles, and therefore yields the point p inside K most distant from the boundary of K (where it would imply
an inner angle tight on the lower bound). This does not imply, however, that this point actually maximizes
the minimum inner angle it implies.

A further strategy we consider therefore is the direct maximization of the minimum inner angle implied.
To this end, let

¢ :R* —» R*

denote the 3n inner angles of all n triangles incident on a vertex, dependent on its position p. Each incident
triangle, with, besides p, constant vertex positions a and b, contributes three elements ¢; to ¢, and each ;
is of one of three forms:

b—a p—a
<
o) = arccos<7>,
o [o=al To—al

o (p) = arccos <a—p b—p>
lla—=pl" 16— pll
and ¢, = ¢, measuring the angles at a, p, and b, respectively. We would like to choose p such that

f*(p) = min p;(p) — max. (3)

1€[3n]

This raises the question whether finding this maximum, given the nonlinear nature of f*, is practically
feasible.

Proposition 1. f* is quasiconcave inside of the visibility kernel of the central vertex’s link polygon.

Proof. The point p lying inside the visibility kernel is equivalent to all incident triangles having positive
orientation. In this regime ¢35 (p), ¢2,(p), and ¢ (p) clearly are quasiconcave, and therefore each ¢; for
i € [3n]. As the minimum of quasiconcave functions is quasiconcave, f* is quasiconcave. O
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(a) Greyscale visualization of the smooth (b) Color-coded gradient V f on the same (c) The path of a gradient ascent, fol-

minimum f over all angles affected by configuration. The gradient’s direction lowing the gradient towards the global
the collapse of a triangle (green). Level is hue-coded, its magnitude brightness- maximum, here lying inside the angle-
sets (0° 5°% 10° 15° 20° 25°% 30°) shown in coded as shown in the inset. bounded kernel for § = 30° (blue).

blue; the outermost (0°) forms the visi-
bility kernel of the link polygon.

Figure 6: Illustration of minimum inner angle maximization for the case of a triangle collapse.

As an alternative argument, recall that the angle-bounded kernel K defined in Section 4.2 is convex for
any angle # > 0. Notice that these angle-bounded kernels are exactly the upper level sets of f*, i.e.
K ={p| f*(p) > 0}. Convexity of all upper level sets implies quasiconcavity as well (Arrow and Enthoven,
1961).

Quasiconcavity implies a unique maximum (Mangasarian, 1994) and enables us to reliably find it using
a gradient ascent — which, however, additionally requires differentiability. f*, unfortunately, is not differen-
tiable because of the involved minimum. We can, however, instead employ a differentiable smooth minimum
and define f(p) = smin, (p(p)) with

smin,, : R - R

1
t— o log '%] exp(at;) .
1€(|3n

This smin,, is known as the (scaled) LogSumExp function. For a < 0 it is a smooth minimum-like function,
for &« — —oo it converges to the minimum function. Note that smin,, for a < 0, is a concave function
and therefore f like f* is quasiconcave, such that it can be used for a gradient ascent. Furthermore,
f(p) < f*(p) Vp € R?

Figure 6a illustrates this function f (with a = —102%, our default used throughout) for the same local
mesh configuration as in Figure 5. Some isocurves of f* are marked in blue, the outermost one (f* = 0°)
bounds the visibility kernel, and the innermost one (f* = 30°) is exactly the intersection K from Figure 5b.

Gradient. According to the chain rule the gradient is given by Vf(p) = Jsmin((p)) - J,o(p) with J being
the respective Jacobian matrices. The partial derivatives of smin, are simply

) = exp(at;)

—— sming, .
Zje[?,n] exp(at;)

ot;



The partial derivatives of the elements of ¢ are a bit lengthier, but still easy to evaluate:

N e b= a.p—a) )5 and

Oi b—allllp—al b —all{p —a,p—a)? (b—a,b—a){p—a,p—a)
0 QD/E( )(aﬂ?ibmi+2p$i (aiq‘,*pri)<a7pab7p> (bfipzq‘,)<ap7bp>>

3 3
o7 Ta=pllb—pl * [o—plia-pa—pF  Ja—pllb—pb—p)

(1 (a—p,b—p)? )5
(a—p,a—p){b—pb—p) '
Figure 6b illustrates the gradient V f for the configuration from Figure 6a.

Gradient Ascent. Using the above gradient, we can perform an iterative gradient ascent. As long as we start
from a point within the visibility kernel (i.e. a point that implies no flipped triangle), it will converge towards
the maximum of f. In the ascent step, we employ a backtracking line search with a simple adaptive step
size selection: the step size is halved until the current step leads to an improved target function value, i.e.
an increase in f, and the next step’s line search starts with twice the successful step size from the previous
iteration. We terminate the line search if the step size drops below 1073x the shortest edge length in the
vertex’s link, and impose a limit of 100 halvings. Figure 6¢ shows a zoomed in version of Figure 6b with the
steps of the gradient ascent, starting from the triangle’s center point, drawn in white.

4.3. Prioritization

Having a set of local decimation operators as well as methods for the choice of vertex positions at hand,
a remaining question is where and in which order these operators shall be applied. As a collapse affects
certain inner angles that are relevant also for other collapses and their legality, the order in which potential
collapses are attempted affects how many collapses will actually be legally possible.

A baseline option is the random choice of order, i.e. halfedges, edges, or triangles are selected in random
order, and their collapse (using one of the above vertex positioning choices) executed if legal.

Alternatively, we can proceed greedily following some priority. A potentially beneficial option is to
always perform that collapse that, among all legal collapses, implies the maximum minimum angle among
all affected inner angles — in the hope that this leaves maximum freedom for subsequent collapses to succeed.
To efficiently implement this, initially the badness of each possible collapse is evaluated: the minimum angle
that would be formed if the collapse was executed. The collapses are then sorted in a priority queue
accordingly. One after the other they are then taken from the queue (starting from the least bad) and
executed if possible. Whenever a collapse is executed, the mesh’s connectivity and its inner angles change
in a very local neighborhood region. The badness scores of queue elements associated with this region
are updated and the queue resorted accordingly. A heap-based implementation is appropriate for that
matter. Compared to the random order, this sorted order causes additional computational cost, in the
form of maintaining the sorted priority queue and of computing badness scores multiple times per potential
operations.

Additionally, prioritizing triangle collapses, which affect a larger region, over edge collapses could have
a positive effect, so we also evaluate this option.

5. Evaluation

With a number of decimation operators, vertex positioning choices, and prioritization options at hand,
we aim to evaluate the relative performance of the various combinations, in particular in terms of the degree
of simplification that is achieved and the computational time required.
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Figure 7: Example random constraint set L, meshes My, generated using a constrained meshing algorithm with angle parameter

v, and meshes Mff* obtained by simplifying M., using our method (using the m configuration) maintaining a lower angle
bound 6*.

5.1. Input Data

We generate several thousand test input meshes for our evaluation. To this end, for each instance, we
generate a constraint set L (cf. Section 3) by placing into a bounding box a fixed number of line segments,
with end points randomly chosen inside the box (with some margin), and splitting these segments at points
of intersection. Figure 7a shows one such resulting constraint set L. We then apply the Delaunay refinement
based algorithm of Ungor (2004) as implemented in the Triangle library (v1.6) (Shewchuk, 1996) to generate
a triangulation M conforming to L, setting the target minimum angle parameter, referred to as ¢ in the
following, to 10°, 20°, 25°, or 30°. We generate 1000 such input meshes per angle parameter setting. Figure 7b
shows an example for the 30° case, Figure 7e for the 20° case.

We tune the number of random line segments such that the meshes M created that way have around
10000 triangles for the 30° case. Tests with meshes of sizes at different orders of magnitude did not reveal
any significant differences, so we focus our attention on this exemplary dataset.

5.2. Experiments

We perform experiments with various combinations of the options presented above. In terms of collapse
types we use either just halfedge collapses, or halfedge and edge collapses, or the full set: halfedge, edge,
and triangle collapses. In terms of order we may use prioritization by the minimum implied angle, and we
may prioritize triangle collapses whenever possible. All in all, we explore the following combinations, and
use the listed symbols to indicate them in upcoming plots:

o halfedge collapses

e halfedge collapses + angle priority

o halfedge, edge collapses

+ halfedge, edge collapses + angle priority
» halfedge, edge, triangle collapses
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a halfedge, edge, triangle collapses + angle priority
m halfedge, edge, triangle collapses + angle priority + triangle priority

For each combination that involves not only halfedge collapses, we can furthermore employ one of five
different vertex positioning strategies (Section 4.2) which we indicate by colors:

Centroid
e Kernel Mean
QCQP (1)
e QCQP (2)
e Min Angle Maximization (3)

For the latter strategy, there is a parameter « in the employed smooth minimum function. If || is chosen
too small, the minimum is smoothed heavily, resulting in an ascent to an inaccurate maximum point. A large
value, by contrast, may slow down the ascent due to the consequent near-discontinuity of the gradient. Tests
lead to o = —102 as a good trade-off; larger values only slow down the process without noticeable benefit.
Also experiments with gradual adjustment of the value in the course of the ascent showed no consistent
benefit.

Remark. We additionally experimented with patch collapses (contracting not a single but multiple adjacent
triangles to a merger vertex at once) as well as with interleaved vertex shifts (optimizing all vertex positions
by means of the angle maximizing gradient ascent from Section 4.2.4). Effects were minuscule, so we exclude
them from further consideration.

5.3. Results

We start by considering the case of §* = 30°, a practically important case because meshes with angle
bounds up to around that value can be generated with high reliability by various methods, while sources for
and occurrences of meshes with significantly higher bounds are scarce to begin with.

Figure 8 shows the experimental results when applying the various configurations of the simplification
method with 8* = 30° to the dataset of 30° input meshes, i.e. the existing lower bound is maintained. More
precisely, Figure 8a shows the reduction |Toutl/|73,,| and the run time! for the various algorithm configurations,
averaged over the 1000 test input meshes (cf. Section 5.1).

Positioning strategy. It is observable that the choice of vertex positioning strategy has a particularly clear
effect on the results — in terms of run time as well as in terms of achieved reduction. The simple centroid
strategy is by far worse than the other strategies in terms of reduction, while the run time advantage over
some other configurations is not particularly large. In other words, putting some effort into computing the
position of merger vertices does pay off.

Collapse types. Within each positioning strategy, it can be observed that the types of employed collapses
matter, too. The more collapse types are used, the greater is the reduction but also the run time. The
result of using only halfedge collapses is not shown in the plot; this simplistic approach can be considered
impractical, only reducing to |Toutl/|T3,| & 94% on average (albeit in ¢ ~ 0.1s).

Prioritization. Regardless of the choice of positioning strategy and the choice of collapse types, the prioriti-
zation based on the implied minimum angle further reduces the number of triangles, albeit to a small degree
only. Notice how the cost of maintaining the priority queue is reflected in these experiments; in particular,
this prioritization in combination with the positioning strategy using QCQP (2) takes impractically long,
t ~ 4min (achieving a reduction of |Toul/|T3,| & 65%), such that we omit them from the plot. We exper-
imented with various initializations for the QCQP (2) strategy, starting from the position resulting from
other positioning strategies, but did not find a setting with a consistently positive effect on run time.

LAll timings stem from single-threaded execution on an AMD 3970X processor; the QCQP problems were solved using the
Gurobi Optimizer 9.5 (www.gurobi.com).
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Figure 8: Reduction of the number of triangles against run time for various algorithm configurations. Left: averages. Right:
per-mesh results for a subset of configurations.
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Figure 9: Results when simplifying towards bounds 6* that are lower than the input meshes’ minimum angle .

Finally, additionally giving priority to triangle collapses over other collapses yields the best results in
terms of reduction — while interestingly improving the run time, in essence because it reduces the number
of position (re)calculations.

Figure 8b shows the individual results per input mesh from the test data set for three algorithm con-
figurations with different vertex positioning strategies. It can be observed that the results of the different
configurations are well-clustered and the variance over the different inputs is relatively small, i.e. the relative
performance of the different algorithm configurations is quite consistent, at least across the used class of
input meshes. Reasonable conclusions are therefore drawable by considering averages, as in Figure 8a. As
an individual example, the result of the m configuration (all collapse types, minimum angle maximization,
prioritization) on the input from Figure 7b is shown in Figure 7c.

Other target bounds 6*. The results for 6* = 25°, 6* = 20°, and 0* = 10° are presented in Figure 9. As
expected, the lower the bound 6*, the more reduction can be achieved. Quite interestingly, though, the lower
the bound #*, the smaller is the difference between the various configurations in terms of reduction: While
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Figure 10: Results for lower initial angles ¢ and target bounds 6*.

in Figure 8a they span more than 10 percentage points, in Figure 9c¢ they span just half a percentage point.
It is notable that the gradient ascent approach, which provided the probably practically most reasonable
option for the case considered in Figure 8a, is no longer the best choice in the low-angle cases — though the
differences are small. Interestingly, the simple centroid strategy provides a good trade-off between run-time
and reduction performance in the case of Figure 9c. The prioritization based on angles is still beneficial
in most cases, while the prioritization of triangles does not pay off here. One example result for the case
0* = 20° is illustrated in Figure 7d.

Other starting bounds v. In Figure 10 we consider the case of taking meshes with lower angles (¢ = 25°
1 =20°, and ¢ = 10°, again 1000 meshes each) as input. As an example, Figure 7e shows one input for the
1 = 20° case, and Figure 7f the corresponding simplified result. The overall picture is similar to the one
in Figure 8, in terms of relative performance of the various algorithm configurations, with the kernel mean
strategy showing a small relative improvement compared to the ¥ = 6* = 30° case. In absolute numbers,
less reduction is possible — at least when the input meshes are already tailored to the desired bound, as is
the case for the test input meshes generated using the Triangle library.

Summary. We conclude that the use of simple halfedge collapses is not a reasonable choice for angle-bounded
decimation. The use of edge collapses in combination with a simple centroid (i.e. edge mid point) position
choice <+ is only reasonable if run time efficiency is important. If, by contrast, reduction performance is of
utmost importance and run time does not matter at all, the full battery together with QCQP (2) m is the
configuration of choice.

For less extreme scenarios, where a reasonable balance between run time and reduction performance is
sought, the positioning strategies min angle maximization e and kernel mean e are to be recommended for
most cases, where the former has some advantage in terms of implementational simplicity, not requiring a
QCQP solver. Especially when the mesh to be simplified is already tailored to some extent to the desired
lower bound, the m configuration proves to be a good general choice. Figures 1 and 11 show the simplification
of several example meshes following that recommendation.

According to our experience from operating with different types of input meshes (larger, smaller, more
or less constraints) results can of course differ in terms of absolute numbers, regarding run time as well as
regarding the degree of reduction. The above relative conclusions, however, appear to hold quite generally.
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Figure 11: Some meshes before (top) and after (bottom) simplification using the m algorithm configuration for 6* = 30°.
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6. Conclusion

We explored the problem of triangulation simplification while preserving quality by means of maintaining
a strict lower bound on inner angles of the triangular elements. In particular we proposed multiple novel
strategies to choose vertex positions in the process of incrementally reducing mesh complexity through local
collapse operators. The study of their relative performance in combination with various options for the
choice of operators and the choice of order revealed interesting patterns and the presented results enable
the choice of the most adequate configuration for a given use case.

A reference implementation with all discussed options is available®.

?https://openclipart.org
3https://github.com/SteffenHinderink/Plugin-AngleBounded2DSimplification

14


https://openclipart.org
https://github.com/SteffenHinderink/Plugin-AngleBounded2DSimplification

6.1. Future Work

By design, while preserving the angle bound, our method increases the number of low-quality elements.
As we are targeting a simpler triangulation, this is inevitable to a certain extent. Nevertheless, improvements
may be possible (in case this is relevant for an application), for instance by combining additional remeshing or
vertex teleportation operators with the decimation approach, either interleaved or in form of a postprocess.

As vertices are greedily removed one by one, the process is affected by local minima regardless of prior-
itization. The consideration of a longer sequence of collapses as atomic operator could potentially provide
advantages in this regard, albeit at an increased computational cost.

Further directions may include the extension of the underlying ideas to other types of meshes, in particular
volumetric tetrahedral meshes, in which, e.g, tetrahedron collapses can be used as operator for simplification
(Chopra and Meyer, 2002), or quadrilateral meshes, where local diagonal as well as edge collapses (Kinney,
1997; Tarini et al., 2010), but also global poly-chord collapses (Daniels et al., 2008) may play a role for
simplification.
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