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Fig. 1. Our method generates arbitrary-order tetrahedral meshes that conform to prescribed polynomial boundary surfaces, here formed by cubic B-spline
surface patches (left). After conversion to a mesh of polynomial triangle patches and adaptive refinement, provably inversion-free curved tetrahedra (face
elements) are constructed which conform to the surface triangles. Into the gaps between these a second type of (half curved, half planar) tetrahedra (edge
elements) are placed. The remaining space can then be filled with non-curved tetrahedra (straight elements) using established meshing techniques, here shown
semi-transparent. Together, this yields a conforming mesh of inversion-free higher-order tetrahedra that exactly conforms to the given boundary. Just for
visual clarity, the tetrahedra are shown slightly shrunken.

We present a method for the generation of higher-order tetrahedral meshes.

In contrast to previous methods, the curved tetrahedral elements are guaran-

teed to be free of degeneracies and inversions while conforming exactly to

prescribed piecewise polynomial surfaces, such as domain boundaries or ma-

terial interfaces. Arbitrary polynomial order is supported. Algorithmically,

the polynomial input surfaces are first covered by a single layer of carefully

constructed curved elements using a recursive refinement procedure that

provably avoids degeneracies and inversions. These tetrahedral elements

are designed such that the remaining space is bounded piecewise linearly.

In this way, our method effectively reduces the curved meshing problem to

the classical problem of linear mesh generation (for the remaining space).
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1 INTRODUCTION
Representing and discretizing geometric objects by means of meshes

is a fundamental task in computational sciences, from computer

graphics to computational engineering. We are concerned here

specifically with the case of 3D volumetric meshes with simplex

elements, i.e. tetrahedral meshes.
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While most often tetrahedral meshes with linear elements, i.e.

straight-sided tetrahedra, are employed, for various applications

advantages of using higher-order elements have been demonstrated

or conjectured [Müller et al. 2015; Feng et al. 2018; Bargteil and

Cohen 2014; Jiang et al. 2021; Suwelack et al. 2013; Ferguson et al.

2023; Mezger et al. 2008; Zlamal 1973; Babuška and Guo 1996; Wang

et al. 2013]. In this case the geometry of each tetrahedral element,

its edges and facets, is described by polynomials of order > 1. We

are thus dealing with curved tetrahedra.

One important advantage is the ability to geometrically match

curved domain boundaries, if represented polynomially, with the

mesh, avoiding the geometric approximation error that is generally

inevitable when working with linear elements [Luo et al. 2001;

Ciarlet and Raviart 1972b; Bassi and Rebay 1997]. We say the mesh

conforms to the boundary surface.

A fundamental task is the automatic generation of such meshes

for given domains. In this context, a key challenge lies in generating

the mesh in such a way that it is boundary-conforming while at

the same time guaranteeing that all elements are regular. Regularity
refers to the polynomial function defining an element’s shape being

injective, thus free of parametric degeneracies or inversions, as is

an important prerequisite for instance in the context of the finite

element method [Mitchell et al. 1971; Barrett 1996].

Existing volumetric higher-order mesh generation methods fol-

low the principle of a posteriori curving: First generate a linear

tetrahedral mesh, then formally elevate the elements’ order, and

finally curve them, e.g., by optimizing a geometric deformation for

minimal geometric approximation error towards the boundary. In

this setting there are two options: Constraining the optimization

to maintain regularity (but thereby potentially precluding it from

reaching full conformance) or leaving it unconstrained to ensure

reaching conformance (but thereby potentially losing regularity).

Our method presented in the following is an a priori approach
instead. Tetrahedra are generated in a curved state right away, ensur-

ing regularity and conformance by construction. The construction is
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not limited to, e.g., quadratic or cubic elements, but arbitrary polyno-

mial order is supported. On a high-level, it follows the paradigm of

the recent Bézier Guarding approach [Mandad and Campen 2020a]

for 2D mesh generation: A first layer of partially-curved elements

covering the input boundary is carefully constructed, effectively

shielding off its potentially complex curved nature, such that the re-

maining space can be meshed in a compatible way using established

linear meshing techniques. We detail this starting from Section 3.

Let us point out that mesh quality (as opposed to mesh validity)
is not the focus of this work. Due to the existence of validity pre-

serving mesh optimization and remeshing techniques for quality

improvement this can be considered a separate aspect.

We also remark that a relevant but different problem setting

besides precise interpolation of a given domain boundary is that of

(bounded) approximation of the domain [Jiang et al. 2021; Liu et al.

2021; Feng et al. 2018].

2 RELATED WORK
We review previous work on the problem of non-linear mesh gen-

eration, with a particular focus on simplicial meshes of triangles

or tetrahedra, as well as on the properties of regularity and confor-

mance.

2.1 2D Curved Meshing
An approach often taken for the generation of higher-order triangle

meshes in the plane relies on a posteriori deformation: Initially,

a linear mesh is generated, approximating the domain boundary

in a piecewise linear manner. Afterwards, a deformation of the

elements into a non-linear curved state is performed, driven by

objectives promoting low approximation error and low distortion

[Hu et al. 2019; Toulorge et al. 2013; Roca et al. 2011; Ruiz-Gironés

et al. 2016; Abgrall et al. 2014; Xie et al. 2013; Persson and Peraire

2009; Paul 2018; Xu and Chernikov 2014; Oliver 2008; Moxey et al.

2016; Fortunato and Persson 2016; Turner et al. 2018; Poya et al. 2016;

Shephard et al. 2005]. Extensions to non-planar triangles on curved

parametric surfaces have likewise been considered [Gargallo-Peiró

et al. 2013]. Besides such geometric deformation, structural mesh

modifications (flips, splits, collapses) may be applied in the process,

enabling improved results in some cases [Hu et al. 2019; Cardoze

et al. 2004; Luo et al. 2004; Shephard et al. 2005; Dey et al. 1999].

Elements may even be snapped to the boundary [Dey et al. 1999;

Rangarajan and Lew 2014; Engvall and Evans 2016; Jaxon and Qian

2014], so as to establish conformance. This, however, may destroy

regularity.

Another approach is to construct elements that are curved a priori,
so as to establish conformance from the start [Mansfield 1978; Gor-

don and Hall 1973; Zlamal 1973; Haber et al. 1981; Sevilla et al. 2016].

Then, however, yielding regularity turns out to be challenging, un-

less the input meets particular smoothness assumptions [Ciarlet and

Raviart 1972a; Rangarajan and Lew 2014]. Untangling methods have

been proposed to improve regularity in a post-process [Toulorge

et al. 2013, 2016], though without guarantees of success.

A quite different approach is taken in recent work [Mandad and

Campen 2020a]: Conformance and regularity are established in an a
priori manner by means of a divide-and-conquer like strategy. This

idea was subsequently extended to, in addition to validity guaran-

tees, provide quality guarantees [Mandad and Campen 2021], and

generalized from polynomial to rational elements [Khanteimouri

et al. 2022; Yang et al. 2022]. These methods address the 2D triangle

mesh setting and do not readily extend to 3D.

2.2 3D Curved Meshing
Similar to the 2D case, for the generation of 3D higher-order tetra-

hedral meshes there are mainly indirect methods, starting with a

linear mesh and deforming it so as to get closer towards confor-

mance [Abgrall et al. 2014; Persson and Peraire 2009; Moxey et al.

2016; Fortunato and Persson 2016; Poya et al. 2016; Xie et al. 2013].

This can be done in an interior-point manner, so as to maintain

regularity [Persson and Peraire 2009; Ruiz-Gironés et al. 2017; Jiang

et al. 2021]. Some deformation approaches with a sound solid me-

chanics foundation come with favorable theoretical properties with

regard to reaching conformance [Turner et al. 2018]; in the discrete

setting (fixed mesh, fixed order), however, the situation is less clear.

Enforcing conformance by snapping or projecting to the bound-

ary has been considered in 3D as well [Dey et al. 1999; Luo et al.

2004; Gargallo-Peiró et al. 2015b], at the cost of losing regularity in

general.

Some direct methods, constructing curved elements right away,

have been described as well, often restricted to a specific (low) order,

such as for quadratic elements [George and Borouchaki 2012; Dey

et al. 2001]. Advancing front type algorithms can be generalized to

the curved case, though without regularity guarantees [Mohammadi

and Shontz 2021]. Untangling methods can also be applied in the

curved 3D setting [Toulorge et al. 2013, 2016; Escobar et al. 2003],

possibly with additional mesh structure modification operators [Luo

et al. 2004], though achieving regularity in such an a posteriori
manner is even more challenging in 3D than in 2D.

The approach of Feng et al. [2018] optimizes geometry and topol-

ogy of the curved mesh in tandem based on the optimal Delaunay

triangulation principle. Regularity and conformance are both pro-

moted (the latter through soft fitting term) but not guaranteed. Liu

et al. [2021] and Jiang et al. [2021] likewise modify mesh geome-

try and topology in tandem, in an incremental remeshing manner,

preserving regularity. While not yielding a conforming mesh, this

incremental approach allows bounding the approximation error.

None of these previous works generally generate tetrahedral

meshes with polynomial elements that are guaranteed to be regular

and conforming to the given boundary surfaces—not all of them

even aim to, due to different problem settings. This is the gap for

which our method provides a first solution.

3 METHOD OVERVIEW
The input to our method is a description of the surfaces in R3

that the generated tetrahedral mesh shall conform to. This can be

the boundary of the domain to be meshed, but may also include

material interfaces or any other feature surfaces to be respected. For

generality, we assume these surfaces are represented as arbitrarily

structured meshes of curved polynomial triangles, Bézier triangles

in R3
. Note that various smooth surface representations, such as

polynomial tensor product patches or (trimmed) B-spline surfaces,
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Fig. 2. Overview of our 3D Bézier Guarding approach, from input surface triangles (a) to output volume tetrahedral mesh (g). See Section 3 for an explanation.
Note that here both sides of the input are treated (blue and green), whereas in Fig. 1 meshing was restricted to the interior of a closed object. For visual clarity,
triangles and tetrahedra are shown slightly shrunken.

can be exactly partitioned into triangles of sufficient polynomial

order. Details on input assumptions follow in Section 3.2.

Our goal is to algorithmically generate a higher-order tetrahedral

mesh that perfectly conforms to these input surfaces, i.e. sets of

curved triangles. The main conceptual idea is as follows:

(1) On each input triangle, create a tetrahedron such that, by

construction, it is regular and conforms to the triangle.

(2) On each input edge, between two input triangles, create a

fan of tetrahedra such that, by construction, they are regu-

lar, conform to the curved edge, and together fill the “gap”

between the adjacent tetrahedra constructed in step 1.

Importantly, we create all these tetrahedra such that they are not

only conforming and regular, but such that all their exposed facets

(not conforming to an input triangle or a neighboring tetrahedron)

are planar, and all their exposed edges are straight. The remaining

space therefore is polyhedral, bounded in a piecewise linear manner.

(3) Apply a standard linear tetrahedral conforming meshing al-

gorithm to mesh the remaining space.

(4) Combine all three types of tetrahedra, from steps 1–3, to yield

the output mesh.

The key challenge lies in finding constructions (for steps 1 and 2) that

ensure conformance and regularity, as well as pairwise disjointness

of all these tetrahedra. Unfortunately, this is not even feasible in

general. However, as we show, there is a subdivision of the input

surface meshes for which this problem is feasible and for which

we are able to devise a suitable construction. This subdivision is

incrementally discovered in our method. We start with the original

input mesh, andwherever the construction is not applicable or yields

intersecting elements, local subdivision is performed on the mesh.

Termination is guaranteed by carefully designing the constructions

to exhibit some specific convergence properties under subdivision.

Relation to 2D Bézier Guarding. Conceptually, our method can

be seen as a 3D version of the 2D method of Mandad and Campen

[2020a] that generates higher-order triangle meshes conforming to

given curves in the plane. The idea of that method is to cover the

curves by conforming triangle elements, subdividing where neces-

sary, and finally filling the remaining space with a linear triangle

mesh. A straightforward generalization of this idea to 3D, however,

is hindered by multiple challenges. Localized subdivision of a tri-

angle mesh is more complex than bisecting curves; the condition

(guardability) that drives subdivision does not naturally extend to

3D; the triangle construction that ensures regularity does not apply

to tetrahedra; in 2D one type of elements is sufficient to cover the

curves, in 3D we need multiple types, to cover the curved input

faces as well as to cover the curved input edges before the reduction

to a linear meshing problem is complete.

Illustration. Fig. 2 illustrates the the key steps of our 3D Bézier

Guarding approach. The input (a) is a curved triangulation of a

piecewise polynomial surface, i.e. a set of non-intersecting Bézier

triangles (called patches, yellow), for visual clarity here just two.

First, the guardability of the patches is checked; here one of them is

unguardable. This triggers refinement (b) by means of a split. Then,

face elements (c) are constructed on the guardable patches from both

sides (blue and green). These are Bézier tetrahedra that conform

exactly to the input by construction. Their edges are straight, but

their side facets are still curved since they need to conform to the

curved edges of their yellow base triangle. Therefore, in the next

step, edge elements (red) are constructed, for the inner curved edges

(d) as well as for the boundary curved edges (e). These conform to

the edge as well as to the adjacent face elements by construction. To-

gether, the face elements and the edge elements form a layer around

the input patches that entirely conceals its curved nature; the outer

facets of the edge elements are planar triangles by construction (f).

Whenever some of these elements are not constructible or intersect

mutually, this is resolved by further subdividing the responsible

patches and reconstructing face and edge elements for the newly

created sub-triangles. Afterwards, all compartments of the remain-

ing space are bounded in a piecewise planar manner, such that they

can be meshed with straight-sided tetrahedra (gray) using standard

meshing methods (g). All of the constructed elements including face,

edge, and straight elements are provably regular by construction,

and they join conformingly in a 𝐶
0
manner.

In the following we clarify the technical background (Section 3.1),

the input specification (Section 3.2), and present the main algorithm

(Section 3.3). Details on the subroutines employed by the algorithm

follow (Section 4).

3.1 Bézier Elements
Without loss of generality, we express all polynomial elements (in-

put triangles and output tetrahedra) in the simplicial Bernstein-

Bézier basis of the desired polynomial order 𝑛. To this end, let
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𝑷

𝑯

Fig. 3. Bézier triangle 𝑷 (left) and Bézier tetrahedron 𝑯 (right), here of
degree 2, with blue, red, and green control vectors Γ0, Γ1, Γ2.

= {(𝑢, 𝑣) ⋃︀ 𝑢, 𝑣 ≥ 0,𝑢+𝑣 ≤ 1} denote a unit triangular domain,

= {(𝑢, 𝑣,𝑤) ⋃︀ 𝑢, 𝑣,𝑤 ≥ 0,𝑢+𝑣+𝑤 ≤ 1} a unit tetrahedral domain.

Definition 1 (Bézier Triangle). A 3D Bézier triangle
P(𝑢, 𝑣) ∶ → R3 of degree 𝑛 is defined by its control points (forming
its control net) 𝒑𝑖 𝑗 ∈ R

3, (𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛) as:

P(𝑢, 𝑣) = ∑
𝑖+𝑗≤𝑛

𝒑𝑖 𝑗𝐵
𝑛
𝑖 𝑗(𝑢, 𝑣),

where 𝐵𝑛𝑖 𝑗(𝑢, 𝑣) are the triangular Bernstein polynomials. Moreover,
Γ0 = {𝚪0

𝑖 𝑗} = {𝒑(𝑖+1)𝑗 − 𝒑𝑖 𝑗} and Γ1 = {𝚪1

𝑖 𝑗} = {𝒑𝑖(𝑗+1) − 𝒑𝑖 𝑗}
(𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛 − 1) we call blue and red vectors of the control net,
respectively.

This is illustrated in Fig. 3, and naturally extends to tetrahedral

elements as follows:

Definition 2 (Bézier Tetrahedron). A Bézier tetrahedron
H(𝑢, 𝑣,𝑤) ∶ → R3 of degree 𝑛 is defined by its control net 𝒑𝑖 𝑗𝑘 ∈ R

3,
(𝑖, 𝑗, 𝑘 ≥ 0, 𝑖 + 𝑗 + 𝑘 ≤ 𝑛) as:

H(𝑢, 𝑣,𝑤) = ∑
𝑖+𝑗+𝑘≤𝑛

𝒑𝑖 𝑗𝑘𝐵
𝑛
𝑖 𝑗𝑘(𝑢, 𝑣,𝑤)

where 𝐵𝑛𝑖 𝑗𝑘(𝑢, 𝑣,𝑤) are the tetrahedral Bernstein polynomials. Δ0 =
{𝚫0

𝑖 𝑗𝑘} = {𝒑(𝑖+1)𝑗𝑘 − 𝒑𝑖 𝑗𝑘}, Δ
1 = {𝚫1

𝑖 𝑗𝑘} = {𝒑𝑖(𝑗+1)𝑘 − 𝒑𝑖 𝑗𝑘} and
Δ2 = {𝚫2

𝑖 𝑗𝑘} = {𝒑𝑖 𝑗(𝑘+1) − 𝒑𝑖 𝑗𝑘} (𝑖, 𝑗, 𝑘 ≥ 0, 𝑖 + 𝑗 + 𝑘 ≤ 𝑛 − 1) we
call blue, red, and green vectors of the control net, respectively. The
control points {𝒑⋅ ⋅ 0} (with 𝑘 = 0) form a Bézier triangle, one of the
four facets of tetrahedron H, that we call the base of H.

3.1.1 Regularity. A curved tetrahedral element defined by a Bézier

tetrahedron H(𝑢, 𝑣,𝑤) is regular if H is locally injective. This is the
case iff det(𝐽H) > 0 for all (𝑢, 𝑣,𝑤) ∈ , where 𝐽H is the Jacobian

of H. Concretely, 𝐽H is defined as:

𝐽H(𝑢, 𝑣,𝑤) =
⎛
⎜⎜
⎝

𝜕𝑥
𝜕𝑢
(𝑢, 𝑣,𝑤) 𝜕𝑥

𝜕𝑣
(𝑢, 𝑣,𝑤) 𝜕𝑥

𝜕𝑤
(𝑢, 𝑣,𝑤)

𝜕𝑦
𝜕𝑢
(𝑢, 𝑣,𝑤) 𝜕𝑦

𝜕𝑣
(𝑢, 𝑣,𝑤) 𝜕𝑦

𝜕𝑤
(𝑢, 𝑣,𝑤)

𝜕𝑧
𝜕𝑢
(𝑢, 𝑣,𝑤) 𝜕𝑧

𝜕𝑣
(𝑢, 𝑣,𝑤) 𝜕𝑧

𝜕𝑤
(𝑢, 𝑣,𝑤)

⎞
⎟⎟
⎠
,

where:

𝜕𝑥

𝜕𝑢
(𝑢, 𝑣,𝑤) = 𝑛 ∑

𝑖+𝑗+𝑘≤𝑛−1

(𝑥(𝑖+1)𝑗𝑘 − 𝑥𝑖 𝑗𝑘)𝐵
𝑛−1

𝑖 𝑗𝑘 (𝑢, 𝑣,𝑤),

𝜕𝑥

𝜕𝑣
(𝑢, 𝑣,𝑤) = 𝑛 ∑

𝑖+𝑗+𝑘≤𝑛−1

(𝑥𝑖(𝑗+1)𝑘 − 𝑥𝑖 𝑗𝑘)𝐵
𝑛−1

𝑖 𝑗𝑘 (𝑢, 𝑣,𝑤),

𝜕𝑥

𝜕𝑤
(𝑢, 𝑣,𝑤) = 𝑛 ∑

𝑖+𝑗+𝑘≤𝑛−1

(𝑥𝑖 𝑗(𝑘+1) − 𝑥𝑖 𝑗𝑘)𝐵
𝑛−1

𝑖 𝑗𝑘 (𝑢, 𝑣,𝑤),

(1)

and analogously for 𝑦 and 𝑧, where 𝒑𝑖 𝑗𝑘 = (𝑥𝑖 𝑗𝑘 ,𝑦𝑖 𝑗𝑘 , 𝑧𝑖 𝑗𝑘) are the
control points of H.

The Jacobian determinant can equivalently be written as

det(𝐽H)= (
𝜕

𝜕𝑢
H × 𝜕

𝜕𝑣
H) ⋅ 𝜕

𝜕𝑤
H (2)

= 𝑛3((∑Δ0

𝑖 𝑗𝑘𝐵
𝑛−1

𝑖 𝑗𝑘 ) × (∑Δ1

𝑖 𝑗𝑘𝐵
𝑛−1

𝑖 𝑗𝑘 )) ⋅ (∑Δ2

𝑖 𝑗𝑘𝐵
𝑛−1

𝑖 𝑗𝑘 ). (3)

This determinant is positive iff the three columns of 𝐽H are in right-
hand formation, i.e. the third column has a positive dot product with

the cross product of the first and second. Note that the columns are,

for every (𝑢, 𝑣,𝑤) ∈ , convex combinations of the blue, red, and

green vectors of H, respectively.

3.2 Input
The input to our method is a set of polynomial 3D Bézier triangles

{P𝑖(𝑢, 𝑣) ∶ → R3}, called patches in the following, of arbitrary

degree 𝑛. These triangles may coincide along their edges, forming

(possibly non-manifold) meshes. They are assumed to meet the

following conditions, so as to define a feasible regular conforming

meshing problem:

● No Irregularity: Each patch P𝑖 is regular, i.e. 𝜕P𝑖𝜕𝑢 ×
𝜕P𝑖
𝜕𝑣
(𝑢, 𝑣) ≠

0 for (𝑢, 𝑣) ∈ .

● No Intersection: Patches may only intersect at their bound-

aries, i.e. P𝑖(𝑢, 𝑣) = P𝑗(𝑤, 𝑟), 𝑖 ≠ 𝑗 ⇒ (𝑢, 𝑣), (𝑤, 𝑟) ∈ 𝜕 . If

two patches intersect, then in an entire edge or a corner.

● No Degeneracy: At coincident edge or corner points, no

two patches form a zero angle, i.e. P𝑖(𝑢, 𝑣) = P𝑗(𝑤, 𝑟) ⇒
𝜕P𝑖
𝜕𝑢
× 𝜕P𝑖

𝜕𝑣
(𝑢, 𝑣) ≠ − 𝜕P𝑗

𝜕𝑢
× 𝜕P𝑗

𝜕𝑣
(𝑤, 𝑟).

Note that rectangular Bézier patches of tensor-product type, which
are a popular model for polynomial surface representation, can be

exactly converted into pairs of Bézier triangles of sufficient order. In

this sense they are supported as input as well. A 3D Bézier rectan-

gle T(𝑢, 𝑣) ∶ (︀0, 1⌋︀2 → R3
of degree (𝑚,𝑛) is defined by its control

points 𝒑𝑖 𝑗 ∈ R
3
as:

T(𝑢, 𝑣) =
𝑚

∑
𝑖=0

𝑛

∑
𝑗=0

𝒑𝑖 𝑗𝐵
𝑚
𝑖 (𝑢)𝐵𝑛𝑗 (𝑣),

where 𝐵
𝑚
𝑖 (𝑢) and 𝐵𝑛𝑗 (𝑣) are the Bernstein basis functions of degree

𝑚 and 𝑛, respectively. Then, the Bézier triangle P1(𝑢, 𝑣) of degree
𝑚 + 𝑛 with the following control points {𝒑′𝑎𝑏} represents the first
part of the same surface [Goldman and Filip 1987]:

𝒑′𝑎𝑏 =
1

(𝑚+𝑛
𝑛
)

𝑎

∑
𝑗=0

min{𝑏,𝑛−𝑎+𝑗}
∑

𝑘=max{0,𝑏−𝑚+𝑗}
𝒑 𝑗𝑘(

𝑎

𝑗
)(𝑏

𝑘
)(𝑚 + 𝑛 − 𝑎 − 𝑏

𝑚 + 𝑘 − 𝑗 − 𝑏).

The second Bézier triangle P2(𝑢, 𝑣) can be obtained from the re-

verse array of the rectangular patch’s control points, i.e. {𝒑𝑚−𝑖,𝑛−𝑗}.
More generally, trimmed rectangular patches can conceptually

be partitioned exactly into a set of Bézier triangles as well, though

with challenges due to high resulting degrees, cf. Section 7.1.

3.3 Algorithm
We now present our overall algorithm to generate a higher-order

tetrahedral mesh that conforms to the given set {P𝑖} of triangular
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Algorithm 1: Higher-Order Mesh Generation Algorithm

Data: Triangular 3D Bézier patches {P𝑖} of order 𝑛
Result: Regular conforming tetrahedral mesh of order 𝑛

queue 𝑞 ← all edges of input mesh {P𝑖}
while 𝑞 is not empty do

𝑒 ← 𝑞.pop()
{T𝑖} ← incident input triangle patches of 𝑒

if any T𝑖 is not strongly guardable then ▷ Sec. 4.1
subdivide T𝑖 ▷ Sec. 4.5

update(𝑞)

continue
end
for each T𝑖 do

for both sides construct a face element ▷ Sec. 4.2

end
if 𝑒 is not coverable then

subdivide the T𝑖 with tallest face element ▷ Sec. 4.5

update(𝑞)

continue
end
construct edge elements for 𝑒 ▷ Sec. 4.3

if 𝑞 is empty then
for each pair of non-adjacent edges 𝑒, 𝑒′ do

if R𝑒 ∩ R𝑒′ ≠ ∅ then ▷ Sec. 4.6
subdiv. patch with tallest face elem. ▷ Sec. 4.5

update(𝑞)

continue the while loop
end

end
end

end
tetrahedralize the remaining space

compute control points for these tetrahedra ▷ Sec. 4.4

patches. Algorithm 1 list the algorithm’s high-level structure. The

employed subroutines are detailed in Section 4.

The algorithm considers all edges from an (arbitrarily ordered)

queue 𝑞 that initially contains all edges of the input triangular mesh;

shared edges of two (or more) adjacent triangular patches are con-

sidered one edge, and are included in the queue only once. For each

edge 𝑒 in 𝑞, if any of its incident Bézier triangles T𝑖 (two or more

for inner edges, one for boundary edges) is unguardable we sub-

divide it. Generally, whenever a triangle is subdivided, we remove

its edges (if any) from the queue 𝑞 and add all of the new triangles’

edges to 𝑞; this is denoted as update(𝑞) in the algorithm. Otherwise,

for each T𝑖 , we construct two corresponding face elements (if not

already constructed), one for each side. Then, we check whether

edge 𝑒 is coverable. We say edge 𝑒 is coverable if our edge element

construction is able to create edge elements covering it. If 𝑒 is not

coverable, we subdivide an incident patch of 𝑒; the choice of the

patch with the tallest face element for this purpose is justified in

Section 5.3. Otherwise, the edge elements for 𝑒 are constructed. The

above process continues until the queue 𝑞 becomes empty which in-

dicates that all of the face and edge elements have been successfully

constructed.

In the next part of the algorithm, potential intersections of the

elements are resolved. Each edge 𝑒 is surrounded by a cyclic fan of

incident curved tetrahedra (the constructed face and edge elements).

These tetrahedra of one edge are pairwise disjoint by construction.

But the fans of two (non-adjacent) edges may overlap. Let R𝑒 be
the set of these tetrahedra. For any non-adjacent pair of edges

𝑒 ≠ 𝑒′ we check whether these tetrahedra of R𝑒 are disjoint from
the ones in R𝑒′ . If they overlap we subdivide the patch (incident to

𝑒 or 𝑒
′
) whose face element has the maximum height among all face

elements involved in R𝑒 and R𝑒′ .
Whenever an input patch is subdivided in the algorithm, its inci-

dent face and edge elements (if already constructed) are deleted.

In the end, a linear tetrahedral mesh generation method is applied

to mesh the remaining space, e.g. by applying it to a bounding

box, specifying the boundary of the set of generated face and edge

elements as holes. Our constructions ensure that these holes are

piecewise planar.

4 SUBROUTINES
To clarify the main steps of Algorithm 1, we first describe the con-

struction method of the main elements, namely face, edge, and

straight elements in detail. We show that they are regular by con-

struction and join with 𝐶
0
continuity. Afterwards, we turn to the

subdivision and disjointness test methods, which form further im-

portant parts of the algorithm.

4.1 Guardability
We first define guardability of 3D Bézier triangles (in analogy to the

notion used for 2D Bézier curves by [Mandad and Campen 2020a])

and give an algorithm to test whether an input patch is guardable.

In Section 4.2 we then present an algorithm to construct a Bézier

tetrahedron that conforms to a Bézier triangle—and is applicable

exactly if the triangle is guardable.

We say an oriented plane (through the origin) with normal vector

𝒏 supports a vector 𝒗 iff 𝒏⊺𝒗 > 0. It weakly-supports a vector 𝒗 iff

𝒏⊺𝒗 ≥ 0. We define the following:

Definition 3 (Guardability). A 3D Bézier triangle P is guardable
if the following conditions are satisfied:

(1) (Supporting plane existence) There is plane 𝑃1 that supports
all blue vectors and all red vectors Γ0 ∪ Γ1 of P.

(2) (Separating plane existence) There is plane 𝑃2 that supports
all blue vectors and all negated red vectors (it separates blue
and red vectors).

Let the base plane of Bézier triangle P be the plane that contains

the three corner control points of P. Its normal vector will be denoted

𝒏 in the following.

Definition 4 (Orthogonal Guardability). A 3D Bézier trian-
gle P is orthogonally guardable if there exist supporting and separating
planes orthogonal to the base plane.

Fig. 4 illustrates a cross section view, along 𝒏, of the vectors Γ0
and

Γ1
, an orthogonal supporting plane, and an orthogonal separating

plane in a case where the above conditions are satisfied.
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Fig. 4. Cross section view, along normal 𝒏 of base plane 𝑃 (gray), showing
the vectors Γ0 and vectors Γ1, as well as a supporting plane 𝑃1 and a sepa-
rating plane 𝑃2 with normal vectors 𝒏1 and 𝒏2.

4.1.1 Orthogonal Guardability Test. The existence of a supporting
and a separating plane (and thus guardability) can be tested using a

simple linear program requiring the proper dot product signs of the

plane’s unknown normal vector with the red and blue vectors. The

existence of an orthogonal supporting or separating plane (and thus

orthogonal guardability) can be tested by expressing this in a 2D

projection on the base plane.

Besides testing for the existence of planes, we furthermore com-

pute four particular planes explicitly, to be used in the construction

of regular tetrahedra in the following subsections. We make use of

the following definitions:

● Let cones 𝐶0 and 𝐶1 denote the conical hull of the vectors

Γ0
and Γ1

, respectively, i.e. 𝐶𝑘 = {∑𝛼𝑖𝒃𝑖 ⋃︀ 𝛼𝑖 ∈ R≥0,𝒃𝑖 ∈ Γ𝑘}.
𝐶0 is called the blue cone, 𝐶1 the red cone. Note that for a

guardable Bézier triangle these cones are disjoint, due to the

existence of a separating plane, and contained in a common

halfspace, due to the existence of a supporting plane.

● Let tangent planes𝑇++,𝑇−−,𝑇−+,𝑇+− be oriented planes, with
normals 𝒏++, etc., that are tangent to both cones, 𝐶0 and 𝐶1.

Their orientation is chosen such that (𝑇 ∩𝐶0,𝑇 ∩𝐶1, 𝒏) is
right-handed for each of these four planes. They differ in

whether 𝐶0 and 𝐶1 lie on their positive or negative side; the

first subscript sign indicates the side that contains 𝐶0, the

second the side that contains 𝐶1. Fig. 5 illustrates these four

planes.

Note that 𝑇++ as well as −𝑇−− are weakly-supporting planes in the

sense of Definition 3. 𝑇+− as well as −𝑇−+ are weakly-separating

planes. These four planes support the triangle’s base normal iff the

triangle is not only guardable but orthogonally guardable.

Regarding the computation of the cones𝐶0,𝐶1, note that this can

be performed by means of a convex hull algorithm [Barber et al.

1996]. This yields the sets of spanning vectors Γ̄𝑘 ⊆ Γ𝑘 that form the

edges of the cones. Regarding the computation of the tangent planes,

consider the two convex polygons formed by the intersection of

the two cones with a shifted supporting plane. Simple linear time

algorithms [Preparata and Hong 1977; Toussaint 1983] (and even

sublinear time algorithms [Kirkpatrick and Snoeyink 1995]) are

known to determine these polygons’ pairs of vertices that span

their common (separating) tangent lines. The corresponding pairs

of vectors from Γ0 × Γ1
span the sought tangent planes.

Fig. 5. Left: Outer tangent planes𝑇++ and𝑇−− (yellow). Right: Inner tangent
planes𝑇−+ and𝑇+− (purple). The infinite blue and red cones are clipped by
a sphere (gray) around origin 𝑜 for visualization purposes.

4.2 Face Elements
For an orthogonally guardable triangular patch P ∶ {𝒑𝑖 𝑗} we con-
struct a Bézier tetrahedron H ∶ {𝒑𝑖 𝑗𝑘} as the face element of P by

first adopting the control points of P as control net layer 0 of H, i.e.
𝒑𝑖 𝑗0 = 𝒑𝑖 𝑗 (𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛). This implies conformance, i.e. the

base triangle of H is exactly P. The other control net layers of H are

carefully placed in such a way that H is regular by construction.

4.2.1 Construction Idea. The blue and the red vectors in the first

layer of H (layer 0 with vectors 𝚫
0

𝑖 𝑗0 and 𝚫
1

𝑖 𝑗0) define cones 𝐶0

and𝐶1 (as in Section 4.1.1). Our algorithm to construct H places the

remaining control points (layers 1 and up) in such a way that all blue
vectors lie in this cone 𝐶0 and all red vectors in 𝐶1. Consequently,

for any (𝑢, 𝑣,𝑤), the first and the second column of the Jacobian

matrix 𝐽H are two distinct vectors inside 𝐶0 and 𝐶1, respectively

(since they are convex combinations of blue and red vectors in Δ0

and Δ1
).

The union of all planes through the origin that intersect both 𝐶0

and𝐶1 define a sub-space which is the locus of all vectors that could

Fig. 6. The four great circles shown on the sphere are the sphere inter-
sections of the four tangent planes𝑇++,𝑇−−,𝑇−+,𝑇+−, as shown in Fig. 5,
translated to a concrete point 𝒑. On top the intersection of these with a
plane𝑄𝑘 is shown. If the green vector is chosen to point inside the polygo-
nal green region 𝑔(𝒑) ∩𝑄𝑘 , it is right-handed with respect to any pair of
vectors from the blue and red cones.
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be coplanar with some pair of vectors from 𝐶0 and 𝐶1. Thus, to pre-

clude the zero-valued determinant of the Jacobian, the construction

algorithm places the control points such that the third column’s

vector of the Jacobian never lies inside the above sub-space. The

boundary of this sub-space is actually formed by the above defined

tangent planes of 𝐶0 and 𝐶1. For a point 𝒑, let 𝑇−+(𝒑), 𝑇+−(𝒑),
𝑇++(𝒑) and𝑇−−(𝒑) denote the translations of the oriented tangent
planes to point 𝒑. Then, we denote as 𝑔(𝒑) the intersection of the

four halfspaces on the positive sides of these four planes. Observe

that for any point 𝒑′ in the interior of𝑔(𝒑), the (green) vector 𝒑′−𝒑
(Fig. 6) together with any arbitrary pair of vectors from inside 𝐶0

and 𝐶1 satisfies the nonzero right-hand formation at point 𝒑.
By this argument, we position the other layers 𝑘 > 0 on parallel

planes 𝑄𝑘 with normal vectors 𝒏 as follows. To have proper green

vectors𝚫
2

𝑖 𝑗(𝑘−1), it suffices to position the control points 𝒑𝑖 𝑗𝑘 inside

the green regions defined by𝑄𝑘 ∩𝑔(𝒑𝑖 𝑗(𝑘−1)), as illustrated in Fig. 6.

For simplicity, we place all control points of layers 𝑘 > 0 inside the

common guard region 𝐺P = ⋂𝑖 𝑗 𝑔(𝒑𝑖 𝑗).

4.2.2 Construction Algorithm. Algorithm 2 describes the face el-

ement construction in detail. For a given orthogonally guardable

Bézier triangle P, we first calculate the tangent planes and their nor-
mal vectors {𝒏++, 𝒏−−, 𝒏−+, 𝒏+−}. The planes defining the bound-
aries of all 𝑔(𝒑𝑖 𝑗) (𝑖, 𝑗 > 0, 𝑖 + 𝑗 ≤ 𝑛) can be grouped into four fami-

lies of parallel tangent planes {𝑇++(𝒑𝑖 𝑗)}, {𝑇−−(𝒑𝑖 𝑗)}, {𝑇−+(𝒑𝑖 𝑗)},
and {𝑇+−(𝒑𝑖 𝑗)}. Due to being parallel, the boundary of𝐺P is formed

by only four extreme planes 𝐸++, 𝐸−−, 𝐸−+, and 𝐸+−, one from each

of these families. Concretely, for each family, with common normal

vector 𝒏′, its extreme plane is the one that does not have any control

point 𝒑𝑖 𝑗 on its positive side. Then 𝐺P simply is the intersection of

the positive (closed) half-spaces of these four extreme planes.

Let 𝒙 be the lowest point (over the base) within 𝐺P (see Fig. 7).

We will position the tip-point 𝒑
00𝑛 above 𝒙 (thus inside 𝐺P) but

need to make sure that it lies above the base triangle, i.e. within

the (infinite) prism 𝑀 with triangular base {𝒑
000

,𝒑𝑛00
,𝒑

0𝑛0
} and

axis in direction of 𝒏. This is required for the proof of convergence

in Section 5. To ensure this, if 𝒙 is not in the interior of prism 𝑀 ,

we define the center line 𝐿𝑐 passing through (𝒑000
+𝒑𝑛00

+𝒑
0𝑛0
)⇑3 in

direction of 𝒏 and replace 𝒙 by the intersection point of 𝐿𝑐 and the

boundary of𝐺P (i.e. the highest intersection point of 𝐿𝑐 and the four

extreme planes). Afterwards, we position the tip-point 𝒑
00𝑛 inside

𝐺P ∩𝑀 by 𝒑
00𝑛 = 𝒙 + 𝜇ℎ𝒙𝒏, where ℎ𝒙 is the height of 𝒙 over the

base plane and 𝜇 is a positive constant (that allows for balancing

between the size of the resulting element and its distortion). We use

𝜇 = 1 by default. In the (planar) special case of ℎ𝒙 = 0, we instead

set ℎ𝒙 to a value proportional to the base triangle area.

Then, by considering the straight side edges 𝒑
00𝑛𝒑,

𝒑 ∈ {𝒑
000

,𝒑𝑛00
,𝒑

0𝑛0
}, we calculate 𝒑 as the highest inter-

section point of the side edges with 𝐺P (see Fig. 7). Let 𝑄1 (the

plane that will contain layer 1 of the control net) be the plane with

normal 𝒏 passing through 𝒑. The intersection of 𝑄1 and 𝒑
00𝑛𝒑000

is the first control point of the second layer of H which is denoted

by 𝒒. Finally, by a simple uniform distribution as Fig. 7 illustrates,

the control points of layer 1 and then the other layers can be

Fig. 7. Placement of the control points for the control net layers 𝑘 > 0,
above the point 𝒒. The green polyhedron is the guard region𝐺P.

positioned, in essence by uniformly subdividing the top portion of

the tetrahedron bounded by 𝑄1.

Algorithm 2: Face Element Construction

Data: Orthogonally guardable Bézier triangle P ∶ {𝒑𝑖 𝑗}
Result: Regular face element conforming to P

𝒏 ← normal vector of the base plane of P
calculate tangent planes’ normals 𝑁 = {𝒏++,𝒏−−,𝒏−+,𝒏+−}
calculate extreme planes E = {𝐸++, 𝐸−−, 𝐸−+, 𝐸+−}
calculate lowest point 𝒙 of𝐺P

calculate prism𝑀

if 𝒙 is not in the interior of𝑀 then
calculate line 𝐿𝑐

𝒙 ← highest intersection point of {𝐿𝑐 ∩ 𝐸 ⋃︀ 𝐸 ∈ E}
end
𝒑

00𝑛 ← 𝒙 + 𝜇ℎ𝒙𝒏
P𝑐 ← {𝒑000

,𝒑𝑛00
,𝒑

0𝑛0
}

𝒑 ← highest intersection point of {𝐸 ∩ 𝒑
00𝑛𝒑 ⋃︀ (𝐸,𝒑) ∈ E × P𝑐}

calculate 𝒒 based on 𝒑

adopt control point layer 0 from P
place layers 𝑘 > 0 above 𝒒

The following lemmas show that Algorithm 2 successfully cre-

ates a regular conforming face element for any given orthogonally

guardable triangular patch.

Lemma 1. For any orthogonally guardable Bézier triangle P, 𝐺P is
non-empty and any line in direction of the normal vector 𝒏 intersects
the boundary of 𝐺P in exactly one point.

Proof. Since P is orthogonally guardable, all of the tangent

planes𝑇++,𝑇−−,𝑇−+,𝑇+− have the normal vector 𝒏 on their positive

sides. This implies that 𝒏⊺𝑡 𝒏 > 0, for all the normal vectors 𝒏𝑡 of
the boundary planes of 𝐺P since they are parallel to tangent planes.

Therefore, any line in direction of the normal vector 𝒏 intersects

the boundary of 𝐺P in exactly one point. □
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Lemma 2. Given an orthogonally guardable Bézier triangle P, Al-
gorithm 2 creates a regular face element conforming to P.

Proof. As the base face of the constructed tetrahedron is a Bézier

triangle equal to P, it conforms exactly to P. Lemma 1 implies that

the lowest point of𝐺P, namely 𝒙 , always exists; it is easily computed

(e.g. by a 3D convex hull algorithm or by intersecting multiple triples

of extreme planes). The same holds for the intersection of center

line 𝐿𝑐 and 𝐺P. In addition, Lemma 1 ensures that the tip-point

𝒑
00𝑛 , shifted up from 𝒙 along 𝒏, is inside the guard region 𝐺P. By

construction, the blue and the red vectors of the layers 𝑘 > 0 (all

parallel to base triangle edges) lie inside 𝐶0 and 𝐶1, and the green

vectors 𝚫
2

𝑖 𝑗𝑘 (𝑖, 𝑗, 𝑘 ≥ 0, 𝑖 + 𝑗 + 𝑘 ≤ 𝑛 − 1) are such that any convex

combination thereof is in right-hand formation with any two vectors

in𝐶0 and𝐶1. Thus, recalling eq. (3), the determinant of the Jacobian

is positive everywhere. □

The latter observation is also made use of to state a sufficient

injectivity condition for Bézier tetrahedra by Vavasis [2003].

A further interesting property of the face elements resulting

from this construction can be shown—which we will exploit for the

construction of edge elements in Section 4.3. Let the three facets of

a face element that are not the base facet be called side facets.

Lemma 3. For a face element H ∶ {𝒑𝑖 𝑗𝑘}, two side facets, namely
those that contain the control point 𝒑

000
, are guardable.

Proof. We consider the facet T ∶ {𝒑′𝑖 𝑗} consisting of control

points {𝒑
0𝑖 𝑗 ⋃︀𝑖, 𝑗 ≥ 0, 𝑖 + 𝑗 ≤ 𝑛}; the argument for the other side facet

is analogous. Let blue and red vectors of T be respectively {𝚺0

𝑖 𝑗} =
{𝒑′(𝑖+1)𝑗 − 𝒑′𝑖 𝑗} and {𝚺1

𝑖 𝑗} = {𝒑′
𝑖(𝑗+1) − 𝒑′𝑖 𝑗}. Observe that the

blue vectors of T are a subset of the green vectors of H; precisely
{𝚺0

𝑖 𝑗} = {𝚫2

0𝑗𝑖}. Analogously, the red vectors {𝚺0

𝑖 𝑗} of T are a subset

of the red vectors of H, {𝚺1

𝑖 𝑗} = {𝚫1

0𝑗𝑖}. As Fig. 6 demonstrates,

one of the inner tangent planes supports all red and green vectors

of H while the other one separates them (the same as the outer

tangent planes). Therefore, {𝚺0

𝑖 𝑗} and {𝚺1

𝑖 𝑗} are also supported

and separated by the same planes which conclude the guardability

of T. □

Note that the indexing of the control points of a Bézier triangle

is arbitrary in the sense that any of its three corner control points

could be labeled 𝑝00 (which then implies the indexes of all other

control points of the control net), i.e. indexes can be rotated into

three different orientations, without changing its shape. Formally,

this corresponds to a simple affine reparametrization of the triangle

surface. The notion of (orthogonal) guardability depends on this

choice (because the blue and red vectors do).

Definition 5 (Strong Guardability). A 3D Bézier triangle P
is strongly guardable if it is orthogonally guardable in at least two
orientations.

For a strongly guardable triangle, we can modify the face element

construction to take the inner and outer tangent planes of two

orientations into account. The intersection region of the resulting

eight (instead of four) extreme planes is non-empty (because the

base normal is contained for both orientations), so the positioning

of control points can be based on this modified guard region instead.

For this modification, Lemma 3 can be adapted as follows.

Lemma 4. For a strongly guardable triangle T, the above construc-
tion that takes two orientations into account constructs a regular
conforming face element such that all of its side facets are guardable.

Proof. Applying Lemma 3 for one orientation for which T is

orthogonally guardable proves the guardability of the two side facets

containing the corresponding origin corner. Applying it for the

second orientation for which T is orthogonally guardable proves

guardability of the third. Hence, all side facets are guardable. □

4.3 Edge Element Construction
Face elements cover the curved input triangles. However, their

curved edges are still exposed, and the face elements’ side facets are

curved in general. To achieve the goal of concealing all curvedness,

we therefore construct a second type of elements, edge elements,

covering these curved facets and the curved edges. They essentially

fill the gap sectors between face elements. They are designed such

that their exposed facets are planar.

On a high level, we distinguish between inner edges and boundary
edges of the input mesh, and apply different constructions. At an

inner edge 𝑒 , there are 𝑘 ≥ 2 incident patches (𝑘 = 2 at manifold

Fig. 8. Illustration of inner edge elements construction. Top: a case where a
single tetrahedron is sufficient. Bottom: a case where a fan of two tetrahedra
is constructed. Note that a case of straight edge 𝑒 is shown here for clarity;
in general, 𝑒,T,T′ are curved. The exposed triangles of the red tetrahedra
K,K′, by contrast, are always planar by construction.
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edges), dividing the space around the edge into𝑘 sectors. Each sector

contains two face elements that are incident at the edge.We call such

a pair adjacent. Let H and H′ be two such adjacent face elements at

𝑒 . We construct either one or two coupled edge elements between H
and H′ (as illustrated in Fig. 8 by red tetrahedra). We repeat this for

the further pairs of adjacent face elements surrounding the edge to

complete the construction of the edge elements of 𝑒 . In the case that

𝑒 is a boundary edge, four to six coupled edge elements are created

(red and purple tetrahedra in Fig. 9). These cases are spelled out in

the following.

4.3.1 Inner Edge Elements. Assume two adjacent face elements

H ∶ {𝒑𝑖 𝑗𝑘} and H′ ∶ {𝒑′𝑖 𝑗𝑘} and let their adjacent side facets be

denoted by T and T′, respectively (see Fig. 8 top). By Lemma 4 we

know that the triangles T and T′ are guardable. Thus, we first check
whether a single edge element K, filling the gap, can be constructed

by considering either T or T′ as the base triangle ofK. Assuming T as

the base, we first compute the guard region 𝐺T and then determine

whether 𝒑′
00𝑛 lies inside 𝐺T. If 𝒑

′
00𝑛 ∈ 𝐺T we compute the 𝒒-point

of K, analogous to the face element construction. Let us denote the

first point of the second layer of T′ (on the edge 𝒑
000

𝒑′
00𝑛) by 𝒒′.

If 𝒒′ lies above 𝒒 (further from 𝒑
000

along the edge 𝒑
000

𝒑′
00𝑛) we

use 𝒒′ as 𝒒 in the routine that places the control points of K (layers

𝑘 > 0) uniformly as described for the face elements construction.

Otherwise, if 𝒑′
00𝑛 ∉ 𝐺T or 𝒒′ is not above 𝒒, we repeat the same

procedure by assuming T′ as the base triangle of K.

Algorithm 3: Inner Edge Elements Construction

Data: Non-boundary edge 𝑒

Result: One or two regular edge elements (for one sector),

conforming to 𝑒 and to the adjacent face elements, or

‘uncoverable’

T,T′ ← incident face element sides of 𝑒

for each S ∈ {T,T′} do
calculate𝐺S,𝒒,𝒒

′,𝒑
tip

with respect to base S
if 𝒑

tip
∈𝐺S and 𝒒′ is higher than 𝒒 then

𝒒 ← 𝒒′

adopt control point layer 0 of tetrahedron K from S
place layers 𝑘 > 0 of K above 𝒒

return {K}
end

end
compute line 𝐿

mid
∶ (𝒑

mid
,𝒏

mid
)

compute the set E of all extreme planes of T and T′

if 𝒏⊺𝑒 𝒏mid
> 0 for all normal vectors 𝒏𝑒 of the planes in E then

𝒙 ← highest intersection point of {𝐿
mid
∩ 𝑃 ⋃︀ 𝑃 ∈ E}

𝒑
tip
← 𝒙 + 𝜇ℎ𝒙𝒏mid

compute 𝒒-points of K and K′ w.r.t. 𝒑
tip

adopt control point layers 0 from T and T′, respectively
place layers 𝑘 > 0 of K, K′ above their respective 𝒒-points
return {K,K′}

end
return ‘uncoverable’

If a valid single edge element cannot be constructed this way, we

instead attempt to construct two coupled edge elements K and K′ as
Fig. 8 bottom illustrates. Let 𝒏T and 𝒏T′ be the normal vectors of the

base triangles of T and T′ and 𝒑
mid

be the mid point of the shared

edge 𝑒 . We define the orthogonal bisector line 𝐿
mid

in direction of

𝒏
mid
= 𝒏T+𝒏T′ passing through the point𝒑mid

. If this line intersects

each guard region boundary, 𝜕𝐺T and 𝜕𝐺T′ , in only one point, we

compute 𝒙 as the highest (the farthest from𝒑
mid

) of these two points.

Note that this is the lowest point in𝐺T ∩𝐺T′ in direction 𝒏
mid

from

𝒑
mid

. Then, similar to the face element construction, we set the

(shared) tip point 𝒑
tip
= 𝒙 + 𝜇ℎ𝒙𝒏mid

. Finally, we compute the 𝑞-

points (second layer positions) of K and K′ and complete the layers

(using the same method used in the face element construction).

Note that to test whether each of the guard regions 𝐺T and 𝐺T′ is
intersected by line 𝐿

mid
in the desired way, it is sufficient to check

whether 𝒏⊺𝑒 𝒏mid
> 0 for all normal vectors 𝒏𝑒 of extreme planes.

Algorithm 3 summarizes the above construction method for one

sector. We run it for all sectors (two in case of a manifold inner

edge) to attempt to create the edge elements of 𝑒 . If unsuccessful (i.e.

neither the single element construction, nor the coupled element

construction is applicable for some sector), the algorithm reports

that 𝑒 is uncoverable, requesting subdivision of an involved patch.

It will succeed after sufficient subdivision (Lemma 10).

4.3.2 Boundary Edge Elements. Now, the only remaining curved

parts to be covered are those facets of face elements that contain

the boundary edges. Fig. 9 top shows the sketch of our construction

for a given boundary edge 𝑒 with its only incident triangle T. To
construct the edge elements, we define an auxiliary Bézier triangle

S, opposite of T across 𝑒 , such that two edges of S are straight while

Fig. 9. Top: Illustration of boundary edge elements construction. Middle:
Bottom left: Control point positioning to make S conform to the boundary
edge 𝑒 . Bottom right: Inner angle restriction for S, to avoid intersection with
other incident elements.

ACM Trans. Graph., Vol. 42, No. 6, Article 175. Publication date: December 2023.



175:10 • Payam Khanteimouri and Marcel Campen

its third edge conforms to 𝑒 . If S is not guardable, subdivision is

requested. If it is guardable, we first construct two Bézier tetrahedra

K and K′ conforming to S by applying the face element construction

(Section 4.2) to S from both sides (purple tetrahedra). This reduces

the problem to an inner edge element construction problem, i.e. we

can now apply the construction of Section 4.3.1 to 𝑒 to create the

tetrahedra in between K and the face element of T (red tetrahedra).

The fan of red and purple tetrahedra then forms the set of edge

elements of boundary edge 𝑒 .

The main challenge here is to construct a well-shaped auxiliary

triangle S that does not hinder termination of the overall method.

We define S on the base plane of T and need to choose the inner

angles 𝜃1, 𝜃2 of S at endpoints 𝒑
1
,𝒑

2
of 𝑒 (as illustrated in Fig. 9

bottom) sufficiently small. Otherwise, the auxiliary triangle could

(invariant to subdivision) intersect another triangle incident at 𝒑𝑖
(Fig. 9 middle left), or the neighboring auxiliary triangle (Fig. 9

middle right). We therefore choose each angle 𝜃𝑖 to be smaller than

half of 𝜙𝑖 (e.g. 𝜃𝑖 = 1

3
𝜙𝑖 ), the angle towards the closest intersection

line of the base plane with the supporting plane of a triangle incident

at 𝒑𝑖 (or towards the closest edge incident at 𝒑𝑖 contained in the

base plane). We furthermore limit 𝜃𝑖 ≤ 𝜋⇑3.
We then raise the degree to the global order 𝑛, and adopt the con-

trol points of 𝑒 for the first layer of control points along 𝑒 to make S
conform to 𝑒 (Fig. 9 bottom). Note that S may be non-guardable. In

this case and also in the case that the gaps cannot be filled by the

inner edge element construction (red tetrahedra), the algorithm re-

ports that 𝑒 is uncoverable, requesting subdivision of T. Algorithm 4

summarizes the method.

Algorithm 4: Boundary Edge Element Construction

Data: Boundary edge 𝑒

Result: Four to six regular edge elements, conforming to 𝑒 and to

the incident triangle’s face elements, or ‘uncoverable’

construct auxiliary triangle S on 𝑒
if S is orthogonally guardable then

𝐾,𝐾 ′ ← construct face elements for both sides for S
K1 ← call Algorithm 3 for one side of 𝑒

K2 ← call Algorithm 3 for other side of 𝑒

if 𝐾1 ≠ ‘uncoverable’ and 𝐾2 ≠ ‘uncoverable’ then
return {𝐾,𝐾 ′} ∪ K1 ∪ K2

end
end
return ‘uncoverable’

The following lemmas conclude the regularity of the inner and

boundary edge elements, and show the guardability of their planar

facets.

Lemma 5. Edge elements constructed according to Algorithm 3 or
Algorithm 4 are regular.

Proof. The argument for regularity of the single edge element

constructed by following Algorithm 3 is similar to that for face

elements: Since the control points of the layers 𝑘 > 0 are inside the

guard region 𝐺 (for any of the base triangles T or T′), the right-

hand formation holds for any convex combinations of the blue,

red and green vectors. For the second case, where there are two

coupled edge elements, 𝒙 is a point on the boundary of 𝐺T ∩𝐺T′
(since it is the highest intersecting point). Then, because 𝐿

mid
can

cross 𝐺T ∩ 𝐺T′ at most once (𝐺T and 𝐺T′ individually partition

𝐿
mid

into two parts), the tip-point 𝒑
tip

lies inside 𝐺T ∩ 𝐺T′ . The

rest of the argument is analogous to the regularity argument for

the face elements. For boundary edge elements, regularity follows

because the output consists of tetrahedra that are created with

the face element construction method or the inner edge element

construction method. □

Lemma 6. The planar facets of the edge elements are guardable and
the guard region 𝐺 for these facets is the entire half-space defined by
the base plane.

Proof. Each of the planar facets of the edge elements consists of

parallel blue vectors and a set of red vectors that are defined with

the points of two consecutive layers (upward) as Fig. 10 illustrates.

Thus, the conical hull 𝐶0 of the blue vectors (which is a ray in this

case) is separate from the conical hull𝐶1 of the red vectors and they

are supported by a plane as shown in Fig. 10. Moreover, all of the

blue and the red vectors of the base triangle are coplanar which

implies that the inner and outer tangent planes are the same as the

base plane at any control point 𝒑𝑖 𝑗 . Therefore, the guard region 𝐺

is the half-space bounded by the base plane. □

4.4 Straight Element Construction
Having covered the curved input patches with face and edge ele-

ments, the domain yet to be meshed is now bounded by a piecewise

planar (triangulated) surface. Constrained tetrahedralization of this

domain using standard mesh generation methods, e.g. [George et al.

2003; Si 2015], gives a set of straight tetrahedra. Order 𝑛 control

nets then need to be assigned to them, to make them properly join

their adjacent elements. The control points for each of the straight

tetrahedra that is not (face or edge) adjacent to any of the edge

elements are placed uniformly, such that the defined map is linear.

The control point placement in a straight tetrahedron H, however,
can be restricted by adjacent edge elements on the shared edges or

facets; the uniformly placed control points would lead to a non-𝐶
0

situation on these edges or faces. In such elements the control points

are therefore set differently.

Assume for a moment that H is restricted on one facet only. Con-

sider this facet as the base of H (i.e. layer 0 of the control points).

The control points imposed on this shared facet by the neighboring

element form a guardable triangle and, due to planarity, the guard

Fig. 10. Blue and red vectors of a planar facet of an edge element.
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region𝐺 is the entire half-space formed by the base plane according

to Lemma 6. Uniform layers 𝑘 > 0 thus form a regular tetrahedron

over this base layer: All of the green vectors are contained in the

base half-space, which implies that the constructed element is regu-

lar. We can thus safely adopt the neighbor’s control points on the

shared facet, adjusting the otherwise uniform distribution, yielding

a regular (non-linear but straight-sided) element.

Now assume that H is restricted on one edge only. We adopt

the respective control points and complete the control points of

layer 0 (on an adjacent facet) uniformly, again creating a guardable

base (a special case of Fig. 10) for H. Analogously to the above case,

regularity then is obtained by positioning all other layers uniformly.

In any other case (H restricted on more than one facet or on other

edge configurations), we first split H into subtetrahedra (using a

1:4 or 2:6 split, introducing an additional vertex at the tetrahedron

center or a facet center), reducing any configuration to those handled

by the above control point placement rules. This is spelled out in

Algorithm 5.

Algorithm 5: Straight Elements Construction

Data: Polyhedral domain D, bounded by planar guardable Bézier

triangles {T𝑖}
Result: Mesh of conforming straight-sided Bézier tetrahedra

filling D, conforming to the Bézier triangles {T𝑖}
tetrahedralize(D)
for each facet F between straight tetrahedra do

if F is restricted on 2 edges then
perform 2:6-split on F

end
end
for each straight tetrahedron H do

if H is restricted on >1 facet or >1 non-adjacent edges then
perform 1:4-split on H

end
end
for each straight tetrahedron H do

set control points of H
end

Lemma 7. The straight elements that are constructed with the above
method are regular.

4.5 Input Subdivision
If the input patches are such that they do not enable the construc-

tion of all face and edge elements right away, or imply overlap-

ping elements, our method employs local subdivision. To preserve

conformance, we do not subdivide patches in isolation, but take

their adjacency in the input mesh into account. This can be done

by performing red-green refinement [Bank and Weiser 1985]. All

initial triangular patches start out as red patches. As Fig. 11 left

illustrates, the subdivision of a red triangular patch T yields four

red sub-triangles. Then, for every adjacent patch C𝑖 of T, if C𝑖 is
red, we “hang” the corresponding new vertex (by a hanging edge

shown in dashed green) to the opposite vertex in C𝑖 and mark all

these adjacent patches as green. If a green patch is to be subdivided
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Fig. 11. Illustration of red-green refinement for subdivision of the input.

in a later step of our method (as an adjacent or as the main patch

to be subdivided), the hanging edge is removed and a proper split

into four sub-triangles is performed. Fig. 11 right shows the case

for C1 when we subdivide the triangle S. The control points for

the sub-triangles, such that they together define the same original

surface, can be obtained by de Casteljau’s algorithm [Prautzsch et al.

2013, §10.4].

As an alternative, longest edge refinement with recursive propaga-

tion [Rivara 2009] may be used. Both schemes guarantee that the

interior angles of the elements are bounded from below (and con-

sequently from above) under repeated subdivision. We require this

property to guarantee termination; it is exploited in Lemma 8. The

former scheme leads to less propagation of refinement (beyond the

patch of interest), the latter scheme is easier to implement (avoiding

temporary green subdivisions).

4.6 Disjointness Test
By our construction method, the input patches are covered by a

set of curved face and edge elements. The boundary of the union

of all these elements is piecewise planar since each of their inner

(potentially curved) facets has an adjacent element that conforms to

this facet by construction, and each outer facet (of edge elements) is

planar by construction. This implies that this union is equal to the

union of the of these elements’ linear versions (straight tetrahedra

defined by the four corner control points). A check for overlap

between (face and edge) elements can therefore be carried out by

checking for overlap of their linear versions.

To check disjointness, we therefore perform pairwise intersection

tests between straight tetrahedra. Two tetrahedra are considered

overlapping if their intersection is not empty, not one of their ver-

tices, not one of their edges, and not one of their facets. For efficiency,

of course spatial search data structures (e.g. an axis-aligned bound-

ing box tree) can be employed, instead of naively performing the

intersection test for all pairs.

4.7 Numerics
When all computations in an algorithm use basic arithmetic oper-

ators only, numbers stay in the rationals, enabling implementing

the algorithm using an exact rational number type (such as mpq
[Granlund et al. 2019]) for numerical reliability. This is the case for

our method—there are two spots in the above routines, however,

where this is not obvious:

In the face element and edge element constructions, unit normal

vector 𝒏 is made use of. Normalization requires non-rational square

roots. However, we only need a unit normal in one expression, ℎ𝒙𝒏,
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with heightℎ𝒙 = (𝒙−𝒂)⊺𝒏, where 𝒂 is a point on the base triangle or
edge. For a non-unit normal 𝑛̂, we can rewriteℎ𝒙𝒏 = 1

𝑛̂⊺𝑛̂
(𝒙−𝒂)⊺𝑛̂𝑛̂,

i.e. a unit normal is not actually required to evaluate this expression.

As the normal appears squared in this expression, only its (rational)

squared length is needed.

Second, in the auxiliary triangle construction for boundary edge

elements, we need to choose the triangle’s third corner point such

that angles 𝜃𝑖 < 1

2
𝜙𝑖 . To achieve this without using trigonometric

functions, we normalize the edge vector of edge 𝑒 and the direction

vector of the closest intersection line in the 1-norm. From the re-

sulting vectors 𝒅1, 𝒅2 (which have a length difference of at most a

factor of

⌋︂
3) we can then compute 2𝒗1 + 𝒗2, a vector closer to 𝒅1

than the bisector of 𝒅1 and 𝒅2, defining a valid edge direction for

the auxiliary triangle.

5 TERMINATION
The following lemmas support the proof of the overall algorithm’s

termination. Conceptually, we need to show that, after sufficient

subdivision (using a regular subdivision scheme, such as red-green

refinement or recursive longest edge refinement, cf. Section 4.5) of

the input patches, eventually:

● all patches become (strongly) guardable,

● all patch edges become coverable,

● overlaps between face and edge elements vanish.

5.1 Guardable Triangles under Subdivision
Lemma 8. Under repeated regular subdivision of a regular Bézier

triangle T, a sub-triangle’s blue and red cones 𝐶0 and 𝐶1 converge
to rays. The angle between these two rays is bounded by a positive
constant from below.

Proof. The sub-triangle’s control points converge to the triangle

surface under subdivision [Prautzsch et al. 2013, §11.4]. The rate

of convergence is quadratic in the diameter of the subtriangle. Due

to regularity of subdivision (i.e. boundedness of the sub-triangles’

inner angles) the diameter goes to zero. Hence, due to regularity of

the triangle, control vectors converge to be coplanar as the diame-

ter goes to zero. More specifically, blue vectors Γ0
converge to be

parallel, and red vectors Γ1
to be parallel [Li et al. 2012], hence the

cones 𝐶0 and 𝐶1 converge to degenerate cones (i.e. rays). The angle

between these rays is larger than some positive constant due to the

lower bound on the sub-triangles’ inner angles in the parameter

domain in combination with the bounded angle distortion of the

map T that is applied to it, which is due to its regularity. □

Lemma 9. Under repeated regular subdivision of a regular Bézier
triangle T, a sub-triangle T′ becomes strongly guardable and the guard
region𝐺 converges to the half-space bounded by the base plane of T′.

Proof. According to Lemma 8, under repeated regular subdivi-

sion, cones𝐶0 and𝐶1 of sub-triangle T′ converge to rays. These are
tangent to the base plane of T′, thus perpendicular to its normal.

The cones therefore become supported and separated by two planes

containing the normal, thus satisfying the guardability conditions

(Definition 3) as well as, because this argument holds for any ori-

entation of the control points, the strong guardability conditions

(Definition 5). Furthermore, the inner and outer tangent planes

spanned by 𝐶0 and 𝐶1 converge to the base plane as these cones

converge to rays in the base plane. As the control points converge

to the surface, thus to the base plane, also the (translated) extreme

planes converge to the base plane. Therefore, the guard region 𝐺 ,

defined as the intersection of these extreme planes, converges to

the half-space bounded by the base plane. □

Remark: In contrast to the notion of guardability of curves and

the manner of curve subdivision used in the 2D setting [Mandad and

Campen 2020a], in our 3D setting guardability is not monotonous

under subdivision: When a 1:2 split is applied (as is required in

both subdivision schemes discussed above), the sub-triangles of a

guardable triangle can be non-guardable; for a 1:4 split this is not

the case. Nevertheless, after a sufficient number of subdivision steps,

guardability is achieved and maintained in potential further steps.

5.2 Coverable Edges under Subdivision
Lemma 10. Under repeated regular subdivision of incident regular

non-degenerate Bézier triangles, inner edges as well as boundary edges
become coverable.

Proof. Triangles incident on an edge become strongly guardable

by Lemma 9. A side facet of a face element constructed on these is

guardable according to Lemma 4 and its blue and red vectors con-

verge to be coplanar as its one curved edge converges to be straight.

This implies that the guard region𝐺 of a side facet converges to the

half-space bounded by the side facet’s base plane. For an inner edge,

the angle between two side facets sharing this edge converges to be

less than 2𝜋 and positive by the non-degenerate assumption, hence

the angle between the mid-line 𝐿
mid

and the side facets converges

to be less than 𝜋 and positive. The latter implies that the side facets’

guard regions 𝐺T and 𝐺T′ will eventually partition 𝐿
mid

into two

parts, such that two edge elements covering the inner edge can be

constructed. Regarding boundary edges: The edges of a sub-triangle

converge to straight segments since the blue and the red vectors

converge to be parallel (Lemma 8). Thus, the auxiliary triangle S,
constructed with bounded inner angles, becomes guardable. Then

the (purple) elements conforming to these auxiliary triangles are

constructible; in analogy to the arguments regarding face elements

(Lemma 11) their guard regions 𝐺 converge to the base plane and

their base angles to zero. The remaining (red) elements become

constructible by the above argument for inner edge elements. In

conclusion, after sufficient regular subdivision, edge elements can

be constructed for all edges, i.e. all edges become coverable. □

5.3 Vanishing Overlaps under Subdivision
For a straight-sided tetrahedron, let base angles be the three inner
angles between a designated base facet and its side facets.

Lemma 11. Under repeated regular subdivision of a regular Bézier
triangle T, a guardable sub-triangle’s face element converges to a
straight-sided tetrahedron with base angles zero.

Proof. The edges of the sub-triangle converge to straight seg-

ments since the blue and the red vectors converge to be parallel

(Lemma 8). Due to convergence of the boundary of guard region
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𝐺 to the base plane (Lemma 9), the points 𝒙 or 𝒙′ used in the face

element construction converge to the interior of the sub-triangle, in

such a way that the base angles of the tetrahedron spanned by the

sub-triangle corners and 𝒙 or 𝒙′ converge to zero. As the distance

between the tip point 𝒑
00𝑛 = 𝒙(𝒙′) + 𝜇ℎ𝒙𝒏 and 𝒙 or 𝒙′, respec-

tively, converges to zero at the same rate, the base angles of the face

element likewise converges to zero. □

Lemma 12. Under repeated regular subdivision of triangles (satis-
fying the input assumptions of Section 3.2) whose face elements and
adjacent edge elements cause overlaps, overlaps vanish.

Proof. Under repeated regular subdivision of a regular trian-

gle T, a sub-triangle’s face elements’ base angles converge to zero

(Lemma 11), thus each face element in its entirety converges to T.
Similarly, each edge element converges to the union of its edge and

the adjacent faces, though this argument requires a case distinc-

tion, spelled out below. This then allows us to conclude that all

elements (the face elements and the inner and boundary edge ele-

ments) converge locally to the input patches; as these are assumed

to be non-intersecting (cf. Section 3.2), this eventually resolves all

global overlaps.

The inner edge elements converge to the union of their two

defining patches since the tip-points of their face elements converge

to their patches (Lemma 11) and the mid-point 𝑝
mid

converges to

the shared edge. For red boundary edge elements, the same is true

as they are constructed in the same manner. For purple boundary

edge elements, note that the inner angles of each auxiliary triangle S
are bounded from above and below by construction, by a constant

independent of the subdivision level of its defining edge. Hence,

the base angles of a purple boundary edge element, generated by

the face element construction on an auxiliary triangle, converge to

zero by an argument analogous to Lemma 11. As S converges to

its defining edge under subdivision of the edge, so does the purple

boundary edge element. Finally, note that the angles of auxiliary

triangles are chosen such that they do not overlap with those of

adjacent boundary edges, excluding also such local overlaps. □

Note that Lemma 10 and Lemma 12 assume that all involved tri-

angles are repeatedly subdivided. For efficiency, Algorithm 1, when

encountering a non-coverable edge or overlapping elements, does

not aggressively subdivide all involved triangle patches right away,

but more parsimoniously only the one with the tallest face element.

As the height of face elements converges to zero under subdivi-

sion (Lemma 11), it is ensured that all other involved patches will

eventually be subdivided as well in further iterations if necessary.

5.4 Termination & Success
Combining Lemmas 2 and 8 to 11 immediately leads to the following

conclusion about Algorithm 1:

Theorem 1. The proposed 3D Bézier Guarding algorithm termi-
nates and yields non-overlapping elements.

Finally, using Lemmas 2, 5 and 7 and recalling that conformance

is by construction for all elements, the following can be concluded:

Theorem 2. The proposed 3D Bézier Guarding algorithm generates
a conforming higher-order mesh with regular tetrahedral elements.

6 EVALUATION
Having formally shown the correctness of the algorithm, we wish

to in addition empirically validate our implementation thereof and

evaluate its behavior. To this end we apply it to various sets of input

instances generated by means of randomization—so as to cover a

wide range of configurations, including highly unrealistic ones, as a

form of stress test—as well as to some example models. Note that

there is no comparable prior method with regularity and confor-

mance guarantee that would naturally lend itself to comparison.

We therefore focus on demonstrating the general behavior of the

proposed method in the following.

6.1 Datasets
For testing purposes we create and use the following datasets.

Random Triangle Soups:

● Set A: 1000 example input instances, each consisting of a

single curved cubic triangle, created by randomly picking

a template (Fig. 12) and perturbing each control point by a

random displacement vector (within 10% of the triangle’s

bounding box size) and verifying that the resulting triangle

is valid (regular and injective).

● Set B: 100 example input instances, each containing a random

selection of 10 of the above 1000 randomly perturbed triangles,

each one of which is randomly rotated, scaled, and positioned

within a bounding box, while preventing mutual intersection.

● Set C: 10 example input instances, each containing a random

selection of 100 of the template triangles, each one of which is

randomly rotated, scaled, and positioned within a bounding

box, while preventing mutual intersection.

These sets contain instances with isolated triangles only, i.e. there

are no inner edges. Note, however, that due to being non-guardable

or due to their implied face or edge elements overlapping, subdivi-

sion will occur, creating subtriangles and therefore inner edges. This

means that all parts of the algorithm, including those responsible

for inner edge elements, come into play in experiments on these

datasets.

Fig. 12. Template Bézier patches used as basis for randomized stress test
dataset generation.
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Table 1. Result statistics for the various randomized datasets and the example models. Reported are the numbers of input triangles and their number
after subdivision, the numbers of generated face, (inner and boundary) edge, and straight elements, the run time (in exact numerics mode) to perform the
construction of all face and edge elements, to adaptively subdivide the patches, to test elements for intersection, and to generate the straight mesh part. As can
be seen, the algorithm always succeeds in generating all the required curved elements and they are always regular. Only the final straight mesh generation
part (delegated to TetGen in our implementation) can fail in extreme scenarios (e.g. 8 instances of Set B and 3 of Set C) due to numerical limits (last column).

Triangles Elements Time (s) Success

#T in #T out #FE #IEE #BEE #SE guard subdiv itest TetGen total guard regular total

min 1 1 2 0 12 56 0.2 0.0 0.4 0.0 0.6

Set A avg 1 116.5 232.9 329.8 79.9 1387.8 16.9 0.1 42.0 0.1 59.1 100% 100% 99.5%

max 1 4228 8456 12461 952 41980 609.4 2.6 1563.2 3.3 2178.5

min 10 405 810 1046 600 10133 67.9 0.2 156.0 0.2 224.3

Set B avg 10 1741.9 3483.8 4966.8 1056.5 32876.4 212.2 1.2 537.6 1.3 752.3 100% 100% 92%

max 10 6666 13332 19478 2153 121536 752.3 5.3 1968.2 8.6 2734.4

min 100 10087 20174 28102 8725 290151 1284.4 6.8 3355.5 15.3 4662.0

Set C avg 100 18139.2 36278.4 51758.2 10893.2 335060.7 2125.4 13.1 6122.8 28.7 8290.0 100% 100% 70%

max 100 27499 54998 79370 12982 358049 3096.4 18.5 9375.0 54.0 12543.9

min 1000 1026 2052 3419 0 11476 30.4 0.1 289.1 0.3 319.9

Set D avg 1000 1244.5 2489.0 4009.2 0 13424.0 89.0 0.2 398.9 0.6 488.7 100% 100% 100%

max 1000 1742 3484 5432 0 17939 318.9 1.1 632.7 4.8 957.5

Roof 12 1812 1812 2723 0 8771 190.1 2.2 449.0 0.5 641.8 100% 100% 100%

RoundedCube 12 144 144 216 0 693 12.5 0.1 10.5 0.0 23.1 100% 100% 100%

EdgyDonut 16 3152 3152 4728 0 14898 350.7 3.8 1031.9 0.9 1387.3 100% 100% 100%

Retinal 1168 1330 1330 1995 0 6736 35.2 0.1 166.1 0.2 201.6 100% 100% 100%

Hand 1300 3132 3132 4704 0 15354 104.9 0.9 554.6 0.6 661.0 100% 100% 100%

NoisyCube 642 3740 3740 5649 0 18534 150.2 1.3 829.1 0.8 981.4 100% 100% 100%

Sculpture 816 2130 2130 3199 0 10260 76.7 0.7 415.5 0.3 493.2 100% 100% 100%

Gyroid 10166 11934 11934 17901 0 59829 265.2 1.4 6276.3 5.9 6548.8 100% 100% 100%

HalfTunnel 1568 3136 6272 4608 384 17331 82.7 0.5 385.3 0.6 469.1 100% 100% 100%

YasIsland 1475 1686 3372 4802 1026 20669 93.8 0.1 350.2 0.6 444.7 100% 100% 100%

Beetle 2118 6586 13172 19075 3047 73200 667.9 3.9 2015.5 8.2 2695.5 100% 100% 100%

Nevertheless, the subtriangle mesh created through implied sub-

division is of a special kind (𝐺
1
continuous). To also challenge the

implementation with more general configurations, we create ran-

dom test instances consisting of input meshes whose elements are

only 𝐶
0
, i.e. that contain creases between adjacent triangles:

Random Closed Meshes:

● Set D: 100 input instances, each consisting of an initially linear
mesh (Fig. 14, 1000 triangles), degree-elevated to a random

degree 𝑛 within (︀2, 5⌋︀, and each control point perturbed by a

random vector (within 20%/𝑛 of the triangle’s bbox size).

Furthermore, we make use of the following non-random input mod-

els (see Fig. 13) for testing and demonstration purposes:

Models:

● Roof (Fig. 1): 6 rectangular spline patches of bi-degree 3,

converted to 12 Bézier triangles of degree 6.

● RoundedCube: 6 rectangular spline patches of bi-degree 2,
converted to 12 Bézier triangles of degree 4.

● EdgyDonut: 8 rectangular spline patches of bi-degree 3, con-
verted to 16 Bézier triangles of degree 6.

● Retinal: 1168 triangular patches of degree 3.
● Hand: 1300 triangular patches of degree 3.
● NoisyCube: 642 triangular patches of degree 3.
● Sculpture: 816 triangular patches of degree 3.
● Gyroid: 10166 triangular patches of degree 3.

● HalfTunnel: 1568 triangular patches of degree 3, boundary.
● YasIsland: 1475 triangular patches of degree 3, boundary.
● Beetle: 2118 triangular patches of degree 3, boundary.

Fig. 13. Some piecewise polynomial input surface models used for testing.

Fig. 14. Left: Linear template mesh used as basis for Set D. Right: One
example perturbed higher-order version thereof.
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Fig. 15. Left: One example instance from Set B. Center: face and edge elements constructed for this. Notice that only edge elements (red) are visible, because
they completely cover the (non-planar) sides of the face elements. Right: Sliced view of the complete result mesh (including semi-transparent straight elements
in gray, filling a prescribed bounding box), revealing some face elements (blue and green).

6.2 Statistics
We apply our implementation of the proposed method to all in-

stances of all datasets described in Section 6.1. Statistics (avg, min,

max) per dataset are reported in Table 1. This includes the numbers

of face elements, inner and boundary edge elements, and straight

elements generated, as well as the time taken by the parts of the

algorithm. It can be seen that our algorithm succeeded in generating

all the required face and edge elements on all input instances, and

their disjointness and regularity were verified (using the routine

described in appendix A) in all cases.

Note that, in particular for some of the randomized stress test

instances, there can be extreme configurations (e.g. very narrow pas-

sages) in the input. This can trigger many iterations of subdivision

and thereby cause large numbers of small elements. Nevertheless,

our algorithm is able to successfully construct all the required face

Fig. 16. One example result from the instances of Set C. On the right a
sliced view of the complete result mesh is shown (including semi-transparent
straight elements in gray, filling a prescribed bounding box).

and edge elements even for such (rather unrealistic) extreme cases.

This is due to our implementation making use of exact rational

arithmetic to avoid any numerical issues (cf. Section 4.7)—with one

exception: We chose to delegate the straight mesh generation part to

TetGen [Si 2015], which assumes standard double precision. In some

of the geometrically intricate configurations a few elements get so

small that TetGen is unable to handle them as boundary constraints.

This is the (sole) reason for the < 100% total success rates that can be

observed in the last column of Table 1 for some of the randomized

datasets.

Fig. 15 shows an example result from Set B, Fig. 16 an example

result from Set C, and Fig. 17 an example result from Set D. In
Figures 18 and 19 the results for two of the non-random example

models are shown. Fig. 20 illustrates the effect of parameter 𝜇: A

small choice leads to rather flat face elements, with a tendency of

Fig. 17. One example result from the instances of Set D. On the right a
sliced view of the complete result mesh is shown (including semi-transparent
straight elements in gray, filling a prescribed bounding box).
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Fig. 18. Left: Input surface model Sculpture. Center: face and edge elements constructed for this. Right: Sliced view of the complete result mesh (including
semi-transparent straight elements in gray).

Fig. 19. Left: Input surface model HalfTunnel. Center: face and edge elements constructed for this. Right: Sliced view of the complete result mesh (including
semi-transparent straight elements in gray).

triggering less subdivision due to less intersections, a larger choice

to taller face elements of often nicer aspect ratio, with a tendency

of leading to somewhat denser meshes.

Fig. 21 demonstrates the method’s behavior on a non-manifold

input configuration, formed by a prescribed curved interface inside

a domain to which the mesh is asked to conform.

Runtime. Compared to modern linear tetrahedral meshing meth-

ods, the time taken to generate a conforming higher-order mesh

with our method is certainly much higher (see Table 1). Note that

other recent methods for the higher-order case [Feng et al. 2018;

Jiang et al. 2021] likewise report run times up to the range of hours.

Fig. 20. Effect of parameter 𝜇 on RoundedCube. Left: 𝜇 = 0.1. Right: 𝜇 = 1.0.

Our research implementation performs intersection tests between

tentative face and edge elements in a simplistic manner, does not

exploit obvious parallelization options, and indiscriminately uses

exact rational arithmetic [Granlund et al. 2019] throughout. Tests

with using a standard double precision representation for all control

points throughout the algorithm (while keeping all predicates and

intermediate constructions exact) already showed a speed up by a

factor of around 6×—while not causing irregularity for any of our

dataset instances. We therefore believe there to be ample chances

for improvement through further engineering efforts.

7 CONCLUSION
We have presented a method to generate tetrahedral meshes con-

sisting of polynomial elements that are regular and conforming by

construction. The polynomial order can freely be chosen, based on

the application scenario. Key components are explicit construction

Fig. 21. Cut-away views of an example result for a non-manifold model.
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rules for the various types of required mesh elements together with

a systematic subdivision procedure that ensures the applicability

of these constructions. It is a first step into the field of guarantee-

ing approaches for the 3D higher-order setting, but also points to

various interesting questions and challenges for future work.

7.1 Limitations & Future Work
Element Quality. Our focus herein is entirely on mesh validity,

in terms of regularity and conformance. Mesh quality, in terms of

element distortion, can be arbitrarily low (see Table 2), and the re-

sulting meshes are certainly not ideal candidates right away for, e.g.,

simulation purposes. One option to address this aspect is the appli-

cation of mesh optimization in a post-process, of geometric kind

(adjusting control points) or additionally of topological kind (in-

crementally modifying mesh connectivity). Our method effectively

provides a feasible starting point for this, and the optimization can

be constrained to preserve regularity and conformance. A fewworks

have considered such higher-order tetrahedral mesh optimization

already [Liu et al. 2021; Jiang et al. 2021; Dobrev et al. 2019] but

this field deserves further attention. Another option could be the

incorporation of lower bounds on quality directly into the element

construction rules [Mandad and Campen 2021].

Parsimony. Related to this mesh quality aspect is the aspect of

parsimony. Guardability is a sufficient but not a necessary condition

for the existence of a regular conforming element. Hence, part of the

performed subdivision typically is superfluous, leading to unneces-

sarily dense meshes in some regions. Finding tighter conditions is an

interesting direction. Alternatively, a reduction of mesh complexity

can also be addressed as part of the post-process mesh optimization

discussed above, using, e.g., conformance-preserving face or edge

collapses [Liu et al. 2021].

Numerics. When implementing the proposed method using stan-

dard floating point numbers with limited precision, there can of

course be numerical inaccuracies that break the formal convergence

guarantee. This is avoided when using, as discussed in Section 4.7,

exact arithmetic, as we did in our implementation. Nevertheless, it

is likely that downstream applications wish to operate on meshes

represented using standard floating point numbers. Naive conver-

sion (using truncation or rounding of control point coordinates)

from rational to floating point numbers may lead to tiny degen-

eracies or inversions—though this is not the case for any of the

Table 2. Quality statistics over the face and edge elements, averaged over all
output meshes of each dataset. The scaled Jacobian and mean ratio shape
quality measure [Gargallo-Peiró et al. 2015a] are reported; for both the ideal
value is 1.0, while 0.0 would indicate degenerate elements. Let us remark
that the choice of a higher parameter value 𝜇 would lead to higher quality;
for 𝜇 = 3 the scaled Jacobians increase by around an order of magnitude.

Shape Quality Scaled Jacobian

min max avg min max avg

Set A 0.027 0.671 0.247 0.0052 0.114 0.037

Set B 0.0018 0.802 0.223 0.00039 0.177 0.038

Set C 0.000029 0.818 0.201 0.000016 0.187 0.038

Set D 0.0037 0.650 0.156 0.0069 0.281 0.076

1220 instances from our datasets. In 16 instances, however, there

is some near-degeneracy that the floating point based straight el-

ement generation using TetGen cannot handle (cf. last column of

Table 1). Hence, while not a major problem, this numerical aspect

deserves further attention in future work. Note that this is related

to the above mesh quality improvement direction, because highly

distorted near-degenerate elements constitute the highest risk in

this regard.

Straight Meshing. For the generation of the straight-sided ele-

ments we employed TetGen [Si 2015], using its boundary preser-

vation option to yield a mesh conforming to the other elements

(i.e. without refinement along the boundary). While we did not

encounter problems with this, Jiang et al. [2021] report their obser-

vation that using this option seems to reduce robustness. Either way,

reliable conforming linear meshing with boundary preservation is

conceptually possible [George et al. 2003]; the reliability of existing

implementations of course is another question.

Trimmed Patches. Besides triangular/rectangular Bézier patches
and B-spline surfaces, a further common variant for smooth surface

representation are trimmed versions thereof. The trimmed param-

eter domains can be partitioned conformingly into higher-order

triangles, using 2D Bézier Guarding [Mandad and Campen 2020a].

Composing these 2D Bézier triangles with the patch function yields

a set of 3D Bézier triangles, as illustrated in Fig. 22, that together

form the same surface as the trimmed patch (see [Lasser 2008, Theo-

rem 1] for the rectangular case, [DeRose 1988, Theorem 4.1] for the

triangular case). These could then be taken as input. The degree of

these will be rather high, though (e.g. up to 18 in the case of cubic

trimming curves in a bi-cubic patch). While this is inevitable if the

resulting tetrahedral mesh is desired to conform to the 3D trimmed

patch boundaries exactly, for many practical purposes approximate

lower-order solutions [Du et al. 2021] are likely more reasonable.

Beyond Polynomials. Finally, an extension from polynomial ele-

ments to rational elements would be worthwhile from a practical

perspective. In this way, beyond NUBS also NURBS (non-uniform

rational B-splines) could be supported as input surfaces to be con-

formed to exactly. Inspiration may be taken from recent work that

P

D1

D3

T1

T3

Fig. 22. Left: A trimmed tensor product Bézier patch P = ∑p𝐵𝑚𝐵𝑛 in R3

with its rectangular parameter domain trimmed by a polynomial curve of
degree 𝑜 . Right: Triangulation of the trimmed domain by 2D Bézier triangles
D𝑖 = ∑d𝐵𝑜 gives rise to 3D Bézier triangles T𝑖 = P ○ D𝑖 = ∑ t𝐵(𝑚+𝑛)𝑜
that tile the trimmed patch, with control points t depending on d and p.
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addresses curved 2D triangle mesh generation conforming to ratio-

nal curves [Khanteimouri et al. 2022; Yang et al. 2022].
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A REGULARITY TEST
To verify correctness, we test all generated elements for confor-

mance and regularity. While conformance testing is a simple matter

of comparing control points, certifying regularity is more intricate.

The Jacobian determinant of a degree𝑛 Bézier tetrahedron𝑯 , see (2),

is a polynomial, of degree 𝑛̂ = 3(𝑛 − 1), thus can be expressed in

the Bernstein basis (i.e. as a Bézier tetrahedron itself) [Johnen et al.

2013]:

det(𝐽H) = ∑
𝑖+𝑗+𝑘≤𝑛̂

𝑑𝑖 𝑗𝑘𝐵
𝑛̂
𝑖 𝑗𝑘(𝑢, 𝑣,𝑤).

In generalization of the analogous expression for the triangle case

[Mandad and Campen 2020b], the coefficients 𝑑𝑖 𝑗𝑘 can be calculated

as follows:

𝑑𝑖 𝑗𝑘 = 𝑐𝑛 ∑
⋃︀𝑟 ⋃︀=⋃︀𝑠⋃︀=⋃︀𝑡 ⋃︀

𝑟+𝑠+𝑡=(𝑖, 𝑗,𝑘,𝑙)

𝑖! 𝑗 !𝑘!𝑙 !

𝑟 !𝑠!𝑡 !

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

Δ0
𝑥𝑟 Δ1

𝑥𝑟 Δ2
𝑥𝑟

Δ0
𝑦𝑠 Δ1

𝑦𝑠 Δ2
𝑦𝑠

Δ0
𝑧𝑡 Δ1

𝑧𝑡 Δ2
𝑧𝑡

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀
,

where:

● 𝑐𝑛 is a (here irrelevant) positive constant depending on 𝑛,

● 𝑟 , 𝑠 and 𝑡 are quadruple index vectors; i.e. 𝑟 = (𝑟1, 𝑟2, 𝑟3, 𝑟4),
● ⋃︀𝑟 ⋃︀ = 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 and 𝑟 ! = 𝑟1!𝑟2!𝑟3!𝑟4!,

● 𝑙 = 𝑛̂ − 𝑖 − 𝑗 − 𝑘 ,
● Δ0

𝑥𝑟 = 𝑥(Δ0

𝑟1𝑟2𝑟3
) where 𝑥(𝒗) denotes the 𝑥-coordinate of

vector 𝒗. Analogously for 𝑦𝑠 , 𝑧𝑡 , Δ
1
and Δ2

.

Due to the non-negativity of the Bernstein basis, we have that

min det 𝐽H ≥ min(𝑑𝑖 𝑗𝑘), providing us with a lower bound. Due to

the interpolation of the extremal (corner) coefficients, we have that

min det 𝐽H ≤ min(𝑑000, 𝑑00𝑛̂, 𝑑0𝑛̂0
, 𝑑𝑛̂00

), providing us with an upper

bound [Johnen et al. 2013]. If the lower bound is positive, we can

conclude that 𝑯 is regular. Conversely, if the upper bound is non-

positive, we can conclude that 𝑯 is not regular. If neither is the

case, the Bézier tetrahedron det(𝐽H) can be (virtually) subdivided

using de Casteljau’s algorithm [Prautzsch et al. 2013, §10.4], so

as to tighten the bounds per sub-tetrahedron [Johnen et al. 2013].

This can continue recursively until at least one sub-tetrahedron

certifies non-regularity, until all sub-tetrahedra certify regularity,

or (for practical purposes) until a maximum subdivision limit is

reached, in which case the regularity check is inconclusive (and

reports non-regularity to err on the conservative side).
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